L(s) = 1 | + 2-s + 4-s + 5-s + 8-s − 9-s + 10-s − 2·13-s + 16-s − 2·17-s − 18-s + 20-s + 25-s − 2·26-s + 32-s − 2·34-s − 36-s + 37-s + 40-s + 2·41-s − 45-s − 49-s + 50-s − 2·52-s + 64-s − 2·65-s − 2·68-s − 72-s + ⋯ |
L(s) = 1 | + 2-s + 4-s + 5-s + 8-s − 9-s + 10-s − 2·13-s + 16-s − 2·17-s − 18-s + 20-s + 25-s − 2·26-s + 32-s − 2·34-s − 36-s + 37-s + 40-s + 2·41-s − 45-s − 49-s + 50-s − 2·52-s + 64-s − 2·65-s − 2·68-s − 72-s + ⋯ |
Λ(s)=(=(740s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(740s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
740
= 22⋅5⋅37
|
Sign: |
1
|
Analytic conductor: |
0.369308 |
Root analytic conductor: |
0.607707 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ740(739,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 740, ( :0), 1)
|
Particular Values
L(21) |
≈ |
1.770809771 |
L(21) |
≈ |
1.770809771 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 5 | 1−T |
| 37 | 1−T |
good | 3 | 1+T2 |
| 7 | 1+T2 |
| 11 | (1−T)(1+T) |
| 13 | (1+T)2 |
| 17 | (1+T)2 |
| 19 | 1+T2 |
| 23 | (1−T)(1+T) |
| 29 | (1−T)(1+T) |
| 31 | 1+T2 |
| 41 | (1−T)2 |
| 43 | (1−T)(1+T) |
| 47 | 1+T2 |
| 53 | (1−T)(1+T) |
| 59 | 1+T2 |
| 61 | (1−T)(1+T) |
| 67 | 1+T2 |
| 71 | (1−T)(1+T) |
| 73 | (1−T)(1+T) |
| 79 | 1+T2 |
| 83 | 1+T2 |
| 89 | (1−T)(1+T) |
| 97 | (1−T)2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.80821644897585403714162290343, −9.780213099441346580515854375829, −9.026933799111392309276303617302, −7.77567985936988259385724288307, −6.79294902490755101631249068117, −6.06124431521073214267295899939, −5.13488793212626901170948348056, −4.41645981063411314247634537539, −2.72816018386619166937329311600, −2.24576785584387077945318324787,
2.24576785584387077945318324787, 2.72816018386619166937329311600, 4.41645981063411314247634537539, 5.13488793212626901170948348056, 6.06124431521073214267295899939, 6.79294902490755101631249068117, 7.77567985936988259385724288307, 9.026933799111392309276303617302, 9.780213099441346580515854375829, 10.80821644897585403714162290343