L(s) = 1 | + (0.939 + 0.342i)2-s + (0.766 + 0.642i)4-s + (0.5 − 0.866i)5-s + (0.500 + 0.866i)8-s + (−0.766 + 0.642i)9-s + (0.766 − 0.642i)10-s + (−0.766 − 0.642i)13-s + (0.173 + 0.984i)16-s + (0.266 − 0.223i)17-s + (−0.939 + 0.342i)18-s + (0.939 − 0.342i)20-s + (−0.499 − 0.866i)25-s + (−0.5 − 0.866i)26-s + (−1.11 + 0.642i)29-s + (−0.173 + 0.984i)32-s + ⋯ |
L(s) = 1 | + (0.939 + 0.342i)2-s + (0.766 + 0.642i)4-s + (0.5 − 0.866i)5-s + (0.500 + 0.866i)8-s + (−0.766 + 0.642i)9-s + (0.766 − 0.642i)10-s + (−0.766 − 0.642i)13-s + (0.173 + 0.984i)16-s + (0.266 − 0.223i)17-s + (−0.939 + 0.342i)18-s + (0.939 − 0.342i)20-s + (−0.499 − 0.866i)25-s + (−0.5 − 0.866i)26-s + (−1.11 + 0.642i)29-s + (−0.173 + 0.984i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.936 - 0.349i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.936 - 0.349i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.650251732\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.650251732\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.939 - 0.342i)T \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
| 37 | \( 1 + (0.766 + 0.642i)T \) |
good | 3 | \( 1 + (0.766 - 0.642i)T^{2} \) |
| 7 | \( 1 + (-0.939 - 0.342i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (0.766 + 0.642i)T + (0.173 + 0.984i)T^{2} \) |
| 17 | \( 1 + (-0.266 + 0.223i)T + (0.173 - 0.984i)T^{2} \) |
| 19 | \( 1 + (0.766 - 0.642i)T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (1.11 - 0.642i)T + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 41 | \( 1 + (-0.266 - 0.223i)T + (0.173 + 0.984i)T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (1.70 - 0.300i)T + (0.939 - 0.342i)T^{2} \) |
| 59 | \( 1 + (-0.939 + 0.342i)T^{2} \) |
| 61 | \( 1 + (-0.826 + 0.984i)T + (-0.173 - 0.984i)T^{2} \) |
| 67 | \( 1 + (-0.939 - 0.342i)T^{2} \) |
| 71 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 73 | \( 1 - 1.73iT - T^{2} \) |
| 79 | \( 1 + (-0.939 - 0.342i)T^{2} \) |
| 83 | \( 1 + (0.173 - 0.984i)T^{2} \) |
| 89 | \( 1 + (1.93 - 0.342i)T + (0.939 - 0.342i)T^{2} \) |
| 97 | \( 1 + (-0.766 + 1.32i)T + (-0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.82288565465767750410784162990, −9.781074187009740169457226542547, −8.730316232944507614144246552090, −7.951438594711571728767382330490, −7.11451624367898792105820143619, −5.78184061748954251746705590636, −5.36526090952423265772870701422, −4.49121342644326724142916923218, −3.13415677324725465830577282192, −2.01970820442044330070834099099,
1.97997818290919168181820299939, 2.99085623785292930398020984764, 3.91270979372496683527280602980, 5.20597500045679051619337218062, 6.04722431860522052048755942469, 6.75160217320674209692160968404, 7.64103226062183848042639987505, 9.122877021355103237672115317078, 9.863806560868431951503679524958, 10.66805983743670802790624428857