Properties

Label 2-740-1.1-c1-0-6
Degree $2$
Conductor $740$
Sign $1$
Analytic cond. $5.90892$
Root an. cond. $2.43082$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 5-s − 3·7-s + 6·9-s + 5·11-s + 2·13-s − 3·15-s + 4·17-s − 4·19-s − 9·21-s + 6·23-s + 25-s + 9·27-s + 6·29-s − 4·31-s + 15·33-s + 3·35-s − 37-s + 6·39-s − 9·41-s + 10·43-s − 6·45-s − 11·47-s + 2·49-s + 12·51-s − 11·53-s − 5·55-s + ⋯
L(s)  = 1  + 1.73·3-s − 0.447·5-s − 1.13·7-s + 2·9-s + 1.50·11-s + 0.554·13-s − 0.774·15-s + 0.970·17-s − 0.917·19-s − 1.96·21-s + 1.25·23-s + 1/5·25-s + 1.73·27-s + 1.11·29-s − 0.718·31-s + 2.61·33-s + 0.507·35-s − 0.164·37-s + 0.960·39-s − 1.40·41-s + 1.52·43-s − 0.894·45-s − 1.60·47-s + 2/7·49-s + 1.68·51-s − 1.51·53-s − 0.674·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 740 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(740\)    =    \(2^{2} \cdot 5 \cdot 37\)
Sign: $1$
Analytic conductor: \(5.90892\)
Root analytic conductor: \(2.43082\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 740,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.534996595\)
\(L(\frac12)\) \(\approx\) \(2.534996595\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
37 \( 1 + T \)
good3 \( 1 - p T + p T^{2} \)
7 \( 1 + 3 T + p T^{2} \)
11 \( 1 - 5 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 4 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
41 \( 1 + 9 T + p T^{2} \)
43 \( 1 - 10 T + p T^{2} \)
47 \( 1 + 11 T + p T^{2} \)
53 \( 1 + 11 T + p T^{2} \)
59 \( 1 + 8 T + p T^{2} \)
61 \( 1 + 8 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 - 3 T + p T^{2} \)
73 \( 1 - 7 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 + 9 T + p T^{2} \)
89 \( 1 + 16 T + p T^{2} \)
97 \( 1 - 12 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.03174952203399649378141239133, −9.284993923943248760027735739396, −8.798405749374759083599131072327, −7.965299355909049566818828913125, −6.96228910991813633687344598913, −6.31311251034846705906848780783, −4.48878031439686602633803909869, −3.49416389960600763793673657644, −3.08976764586911151057853710056, −1.47616131815811688268284937786, 1.47616131815811688268284937786, 3.08976764586911151057853710056, 3.49416389960600763793673657644, 4.48878031439686602633803909869, 6.31311251034846705906848780783, 6.96228910991813633687344598913, 7.965299355909049566818828913125, 8.798405749374759083599131072327, 9.284993923943248760027735739396, 10.03174952203399649378141239133

Graph of the $Z$-function along the critical line