L(s) = 1 | + (−1.38 − 7.87i)2-s + (−11.0 + 62.8i)3-s + (−60.1 + 21.8i)4-s + (48.5 + 40.7i)5-s + 510.·6-s + (745. + 625. i)7-s + (256 + 443. i)8-s + (−1.76e3 − 643. i)9-s + (253. − 439. i)10-s + (1.30e3 + 2.26e3i)11-s + (−708. − 4.02e3i)12-s + (1.08e4 − 3.93e3i)13-s + (3.89e3 − 6.74e3i)14-s + (−3.09e3 + 2.60e3i)15-s + (3.13e3 − 2.63e3i)16-s + (−1.09e4 − 3.98e3i)17-s + ⋯ |
L(s) = 1 | + (−0.122 − 0.696i)2-s + (−0.236 + 1.34i)3-s + (−0.469 + 0.171i)4-s + (0.173 + 0.145i)5-s + 0.964·6-s + (0.821 + 0.689i)7-s + (0.176 + 0.306i)8-s + (−0.808 − 0.294i)9-s + (0.0802 − 0.138i)10-s + (0.296 + 0.513i)11-s + (−0.118 − 0.671i)12-s + (1.36 − 0.496i)13-s + (0.379 − 0.656i)14-s + (−0.237 + 0.198i)15-s + (0.191 − 0.160i)16-s + (−0.540 − 0.196i)17-s + ⋯ |
Λ(s)=(=(74s/2ΓC(s)L(s)(−0.367−0.929i)Λ(8−s)
Λ(s)=(=(74s/2ΓC(s+7/2)L(s)(−0.367−0.929i)Λ(1−s)
Degree: |
2 |
Conductor: |
74
= 2⋅37
|
Sign: |
−0.367−0.929i
|
Analytic conductor: |
23.1164 |
Root analytic conductor: |
4.80796 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ74(9,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 74, ( :7/2), −0.367−0.929i)
|
Particular Values
L(4) |
≈ |
0.874461+1.28601i |
L(21) |
≈ |
0.874461+1.28601i |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.38+7.87i)T |
| 37 | 1+(−2.34e5−2.00e5i)T |
good | 3 | 1+(11.0−62.8i)T+(−2.05e3−747.i)T2 |
| 5 | 1+(−48.5−40.7i)T+(1.35e4+7.69e4i)T2 |
| 7 | 1+(−745.−625.i)T+(1.43e5+8.11e5i)T2 |
| 11 | 1+(−1.30e3−2.26e3i)T+(−9.74e6+1.68e7i)T2 |
| 13 | 1+(−1.08e4+3.93e3i)T+(4.80e7−4.03e7i)T2 |
| 17 | 1+(1.09e4+3.98e3i)T+(3.14e8+2.63e8i)T2 |
| 19 | 1+(3.29e3−1.86e4i)T+(−8.39e8−3.05e8i)T2 |
| 23 | 1+(5.15e4−8.92e4i)T+(−1.70e9−2.94e9i)T2 |
| 29 | 1+(−4.06e4−7.03e4i)T+(−8.62e9+1.49e10i)T2 |
| 31 | 1+9.34e4T+2.75e10T2 |
| 41 | 1+(−7.52e4+2.73e4i)T+(1.49e11−1.25e11i)T2 |
| 43 | 1+5.14e5T+2.71e11T2 |
| 47 | 1+(4.43e5−7.67e5i)T+(−2.53e11−4.38e11i)T2 |
| 53 | 1+(−1.01e6+8.54e5i)T+(2.03e11−1.15e12i)T2 |
| 59 | 1+(6.64e5−5.57e5i)T+(4.32e11−2.45e12i)T2 |
| 61 | 1+(3.73e5−1.36e5i)T+(2.40e12−2.02e12i)T2 |
| 67 | 1+(3.33e6+2.80e6i)T+(1.05e12+5.96e12i)T2 |
| 71 | 1+(−1.29e5+7.37e5i)T+(−8.54e12−3.11e12i)T2 |
| 73 | 1+3.10e6T+1.10e13T2 |
| 79 | 1+(−3.49e6−2.92e6i)T+(3.33e12+1.89e13i)T2 |
| 83 | 1+(−5.92e6−2.15e6i)T+(2.07e13+1.74e13i)T2 |
| 89 | 1+(−3.09e6+2.59e6i)T+(7.68e12−4.35e13i)T2 |
| 97 | 1+(−1.06e6+1.84e6i)T+(−4.03e13−6.99e13i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.44954797345657304564337973201, −11.95567438305173741076494294943, −11.12436340086055751288026138962, −10.21856498468618309101008714516, −9.243347121688003734320050832142, −8.151738883114586820081800628650, −5.86604845122200511203459637593, −4.66440888729519306243315689643, −3.51313968292395164558038701522, −1.70442996450660406232049912387,
0.60647509569657964521304559511, 1.71211312012975311157344858111, 4.24753194591520576048315692496, 5.98381443438279603664712926999, 6.82249951928643248015582590071, 7.962487331923821754367812227718, 8.862927846683014247725554007260, 10.74604322131929098938411923247, 11.74727499199929099513482938420, 13.21414585479200670763237543116