Properties

Label 2-74-37.9-c7-0-5
Degree $2$
Conductor $74$
Sign $-0.367 - 0.929i$
Analytic cond. $23.1164$
Root an. cond. $4.80796$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.38 − 7.87i)2-s + (−11.0 + 62.8i)3-s + (−60.1 + 21.8i)4-s + (48.5 + 40.7i)5-s + 510.·6-s + (745. + 625. i)7-s + (256 + 443. i)8-s + (−1.76e3 − 643. i)9-s + (253. − 439. i)10-s + (1.30e3 + 2.26e3i)11-s + (−708. − 4.02e3i)12-s + (1.08e4 − 3.93e3i)13-s + (3.89e3 − 6.74e3i)14-s + (−3.09e3 + 2.60e3i)15-s + (3.13e3 − 2.63e3i)16-s + (−1.09e4 − 3.98e3i)17-s + ⋯
L(s)  = 1  + (−0.122 − 0.696i)2-s + (−0.236 + 1.34i)3-s + (−0.469 + 0.171i)4-s + (0.173 + 0.145i)5-s + 0.964·6-s + (0.821 + 0.689i)7-s + (0.176 + 0.306i)8-s + (−0.808 − 0.294i)9-s + (0.0802 − 0.138i)10-s + (0.296 + 0.513i)11-s + (−0.118 − 0.671i)12-s + (1.36 − 0.496i)13-s + (0.379 − 0.656i)14-s + (−0.237 + 0.198i)15-s + (0.191 − 0.160i)16-s + (−0.540 − 0.196i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.367 - 0.929i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.367 - 0.929i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(74\)    =    \(2 \cdot 37\)
Sign: $-0.367 - 0.929i$
Analytic conductor: \(23.1164\)
Root analytic conductor: \(4.80796\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{74} (9, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 74,\ (\ :7/2),\ -0.367 - 0.929i)\)

Particular Values

\(L(4)\) \(\approx\) \(0.874461 + 1.28601i\)
\(L(\frac12)\) \(\approx\) \(0.874461 + 1.28601i\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.38 + 7.87i)T \)
37 \( 1 + (-2.34e5 - 2.00e5i)T \)
good3 \( 1 + (11.0 - 62.8i)T + (-2.05e3 - 747. i)T^{2} \)
5 \( 1 + (-48.5 - 40.7i)T + (1.35e4 + 7.69e4i)T^{2} \)
7 \( 1 + (-745. - 625. i)T + (1.43e5 + 8.11e5i)T^{2} \)
11 \( 1 + (-1.30e3 - 2.26e3i)T + (-9.74e6 + 1.68e7i)T^{2} \)
13 \( 1 + (-1.08e4 + 3.93e3i)T + (4.80e7 - 4.03e7i)T^{2} \)
17 \( 1 + (1.09e4 + 3.98e3i)T + (3.14e8 + 2.63e8i)T^{2} \)
19 \( 1 + (3.29e3 - 1.86e4i)T + (-8.39e8 - 3.05e8i)T^{2} \)
23 \( 1 + (5.15e4 - 8.92e4i)T + (-1.70e9 - 2.94e9i)T^{2} \)
29 \( 1 + (-4.06e4 - 7.03e4i)T + (-8.62e9 + 1.49e10i)T^{2} \)
31 \( 1 + 9.34e4T + 2.75e10T^{2} \)
41 \( 1 + (-7.52e4 + 2.73e4i)T + (1.49e11 - 1.25e11i)T^{2} \)
43 \( 1 + 5.14e5T + 2.71e11T^{2} \)
47 \( 1 + (4.43e5 - 7.67e5i)T + (-2.53e11 - 4.38e11i)T^{2} \)
53 \( 1 + (-1.01e6 + 8.54e5i)T + (2.03e11 - 1.15e12i)T^{2} \)
59 \( 1 + (6.64e5 - 5.57e5i)T + (4.32e11 - 2.45e12i)T^{2} \)
61 \( 1 + (3.73e5 - 1.36e5i)T + (2.40e12 - 2.02e12i)T^{2} \)
67 \( 1 + (3.33e6 + 2.80e6i)T + (1.05e12 + 5.96e12i)T^{2} \)
71 \( 1 + (-1.29e5 + 7.37e5i)T + (-8.54e12 - 3.11e12i)T^{2} \)
73 \( 1 + 3.10e6T + 1.10e13T^{2} \)
79 \( 1 + (-3.49e6 - 2.92e6i)T + (3.33e12 + 1.89e13i)T^{2} \)
83 \( 1 + (-5.92e6 - 2.15e6i)T + (2.07e13 + 1.74e13i)T^{2} \)
89 \( 1 + (-3.09e6 + 2.59e6i)T + (7.68e12 - 4.35e13i)T^{2} \)
97 \( 1 + (-1.06e6 + 1.84e6i)T + (-4.03e13 - 6.99e13i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.44954797345657304564337973201, −11.95567438305173741076494294943, −11.12436340086055751288026138962, −10.21856498468618309101008714516, −9.243347121688003734320050832142, −8.151738883114586820081800628650, −5.86604845122200511203459637593, −4.66440888729519306243315689643, −3.51313968292395164558038701522, −1.70442996450660406232049912387, 0.60647509569657964521304559511, 1.71211312012975311157344858111, 4.24753194591520576048315692496, 5.98381443438279603664712926999, 6.82249951928643248015582590071, 7.962487331923821754367812227718, 8.862927846683014247725554007260, 10.74604322131929098938411923247, 11.74727499199929099513482938420, 13.21414585479200670763237543116

Graph of the $Z$-function along the critical line