L(s) = 1 | + (−1.38 − 7.87i)2-s + (−2.39 + 13.6i)3-s + (−60.1 + 21.8i)4-s + (−34.7 − 29.1i)5-s + 110.·6-s + (−140. − 117. i)7-s + (256 + 443. i)8-s + (1.87e3 + 682. i)9-s + (−181. + 313. i)10-s + (−242. − 420. i)11-s + (−153. − 871. i)12-s + (381. − 138. i)13-s + (−731. + 1.26e3i)14-s + (479. − 402. i)15-s + (3.13e3 − 2.63e3i)16-s + (−1.25e4 − 4.55e3i)17-s + ⋯ |
L(s) = 1 | + (−0.122 − 0.696i)2-s + (−0.0513 + 0.291i)3-s + (−0.469 + 0.171i)4-s + (−0.124 − 0.104i)5-s + 0.208·6-s + (−0.154 − 0.129i)7-s + (0.176 + 0.306i)8-s + (0.857 + 0.312i)9-s + (−0.0573 + 0.0992i)10-s + (−0.0550 − 0.0952i)11-s + (−0.0256 − 0.145i)12-s + (0.0481 − 0.0175i)13-s + (−0.0712 + 0.123i)14-s + (0.0366 − 0.0307i)15-s + (0.191 − 0.160i)16-s + (−0.618 − 0.225i)17-s + ⋯ |
Λ(s)=(=(74s/2ΓC(s)L(s)(−0.752+0.658i)Λ(8−s)
Λ(s)=(=(74s/2ΓC(s+7/2)L(s)(−0.752+0.658i)Λ(1−s)
Degree: |
2 |
Conductor: |
74
= 2⋅37
|
Sign: |
−0.752+0.658i
|
Analytic conductor: |
23.1164 |
Root analytic conductor: |
4.80796 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ74(9,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 74, ( :7/2), −0.752+0.658i)
|
Particular Values
L(4) |
≈ |
0.368106−0.980570i |
L(21) |
≈ |
0.368106−0.980570i |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.38+7.87i)T |
| 37 | 1+(−1.09e5+2.87e5i)T |
good | 3 | 1+(2.39−13.6i)T+(−2.05e3−747.i)T2 |
| 5 | 1+(34.7+29.1i)T+(1.35e4+7.69e4i)T2 |
| 7 | 1+(140.+117.i)T+(1.43e5+8.11e5i)T2 |
| 11 | 1+(242.+420.i)T+(−9.74e6+1.68e7i)T2 |
| 13 | 1+(−381.+138.i)T+(4.80e7−4.03e7i)T2 |
| 17 | 1+(1.25e4+4.55e3i)T+(3.14e8+2.63e8i)T2 |
| 19 | 1+(−1.37e3+7.77e3i)T+(−8.39e8−3.05e8i)T2 |
| 23 | 1+(−3.45e4+5.98e4i)T+(−1.70e9−2.94e9i)T2 |
| 29 | 1+(6.75e4+1.16e5i)T+(−8.62e9+1.49e10i)T2 |
| 31 | 1+1.68e5T+2.75e10T2 |
| 41 | 1+(5.24e5−1.90e5i)T+(1.49e11−1.25e11i)T2 |
| 43 | 1+6.32e5T+2.71e11T2 |
| 47 | 1+(−1.61e5+2.79e5i)T+(−2.53e11−4.38e11i)T2 |
| 53 | 1+(3.91e5−3.28e5i)T+(2.03e11−1.15e12i)T2 |
| 59 | 1+(−1.70e6+1.43e6i)T+(4.32e11−2.45e12i)T2 |
| 61 | 1+(−2.30e6+8.37e5i)T+(2.40e12−2.02e12i)T2 |
| 67 | 1+(2.51e5+2.11e5i)T+(1.05e12+5.96e12i)T2 |
| 71 | 1+(−5.65e4+3.20e5i)T+(−8.54e12−3.11e12i)T2 |
| 73 | 1−3.75e6T+1.10e13T2 |
| 79 | 1+(1.50e6+1.26e6i)T+(3.33e12+1.89e13i)T2 |
| 83 | 1+(−2.60e6−9.49e5i)T+(2.07e13+1.74e13i)T2 |
| 89 | 1+(7.70e5−6.46e5i)T+(7.68e12−4.35e13i)T2 |
| 97 | 1+(−1.60e5+2.77e5i)T+(−4.03e13−6.99e13i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.72952285834580002163348723596, −11.46247071526425522713487115158, −10.48170077712483905080184031039, −9.529844607596495701129907814752, −8.282991736847873881095269110577, −6.84029350173121728268244092385, −4.97484949696440542797581802981, −3.82594147084151037010968481648, −2.12988005010821298259916134381, −0.39208961465832784933795833784,
1.46545991108695645025032773951, 3.67816959488639912933972119993, 5.24975986405262590452420244370, 6.67251835063226838652714819105, 7.51515728537451161777018908320, 8.914879825573194583781761682403, 9.972384105906355909087997401694, 11.36552626120987448810610746394, 12.74252933019941766372271666424, 13.46761003142886480791480154949