L(s) = 1 | + (7.51 − 2.73i)2-s + (28.9 + 10.5i)3-s + (49.0 − 41.1i)4-s + (−48.7 − 276. i)5-s + 246.·6-s + (−219. − 1.24e3i)7-s + (256. − 443. i)8-s + (−947. − 795. i)9-s + (−1.12e3 − 1.94e3i)10-s + (−3.01e3 + 5.22e3i)11-s + (1.85e3 − 674. i)12-s + (−7.24e3 + 6.07e3i)13-s + (−5.05e3 − 8.75e3i)14-s + (1.50e3 − 8.52e3i)15-s + (711. − 4.03e3i)16-s + (−210. − 176. i)17-s + ⋯ |
L(s) = 1 | + (0.664 − 0.241i)2-s + (0.619 + 0.225i)3-s + (0.383 − 0.321i)4-s + (−0.174 − 0.989i)5-s + 0.465·6-s + (−0.241 − 1.37i)7-s + (0.176 − 0.306i)8-s + (−0.433 − 0.363i)9-s + (−0.355 − 0.615i)10-s + (−0.683 + 1.18i)11-s + (0.309 − 0.112i)12-s + (−0.914 + 0.766i)13-s + (−0.492 − 0.852i)14-s + (0.114 − 0.651i)15-s + (0.0434 − 0.246i)16-s + (−0.0103 − 0.00870i)17-s + ⋯ |
Λ(s)=(=(74s/2ΓC(s)L(s)(−0.819+0.573i)Λ(8−s)
Λ(s)=(=(74s/2ΓC(s+7/2)L(s)(−0.819+0.573i)Λ(1−s)
Degree: |
2 |
Conductor: |
74
= 2⋅37
|
Sign: |
−0.819+0.573i
|
Analytic conductor: |
23.1164 |
Root analytic conductor: |
4.80796 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ74(7,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 74, ( :7/2), −0.819+0.573i)
|
Particular Values
L(4) |
≈ |
0.643199−2.04169i |
L(21) |
≈ |
0.643199−2.04169i |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−7.51+2.73i)T |
| 37 | 1+(−6.25e4+3.01e5i)T |
good | 3 | 1+(−28.9−10.5i)T+(1.67e3+1.40e3i)T2 |
| 5 | 1+(48.7+276.i)T+(−7.34e4+2.67e4i)T2 |
| 7 | 1+(219.+1.24e3i)T+(−7.73e5+2.81e5i)T2 |
| 11 | 1+(3.01e3−5.22e3i)T+(−9.74e6−1.68e7i)T2 |
| 13 | 1+(7.24e3−6.07e3i)T+(1.08e7−6.17e7i)T2 |
| 17 | 1+(210.+176.i)T+(7.12e7+4.04e8i)T2 |
| 19 | 1+(1.87e4+6.82e3i)T+(6.84e8+5.74e8i)T2 |
| 23 | 1+(5.09e3+8.82e3i)T+(−1.70e9+2.94e9i)T2 |
| 29 | 1+(−6.21e4+1.07e5i)T+(−8.62e9−1.49e10i)T2 |
| 31 | 1−2.52e5T+2.75e10T2 |
| 41 | 1+(−2.71e4+2.28e4i)T+(3.38e10−1.91e11i)T2 |
| 43 | 1−1.91e5T+2.71e11T2 |
| 47 | 1+(3.11e5+5.40e5i)T+(−2.53e11+4.38e11i)T2 |
| 53 | 1+(−6.97e4+3.95e5i)T+(−1.10e12−4.01e11i)T2 |
| 59 | 1+(5.55e4−3.15e5i)T+(−2.33e12−8.51e11i)T2 |
| 61 | 1+(−1.57e6+1.31e6i)T+(5.45e11−3.09e12i)T2 |
| 67 | 1+(3.54e5+2.00e6i)T+(−5.69e12+2.07e12i)T2 |
| 71 | 1+(1.13e6+4.13e5i)T+(6.96e12+5.84e12i)T2 |
| 73 | 1−7.81e4T+1.10e13T2 |
| 79 | 1+(−5.40e5−3.06e6i)T+(−1.80e13+6.56e12i)T2 |
| 83 | 1+(−6.99e6−5.86e6i)T+(4.71e12+2.67e13i)T2 |
| 89 | 1+(−1.44e6+8.19e6i)T+(−4.15e13−1.51e13i)T2 |
| 97 | 1+(5.47e6+9.47e6i)T+(−4.03e13+6.99e13i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.78824459021682165343058731033, −11.88222647393360601950381800350, −10.33632846482851448589544533417, −9.444498483197817081348599131030, −7.994696613079853464152768149864, −6.74648601325724013530154458415, −4.78748644158938145720774538116, −4.06824325209370860356476096366, −2.36005804166794176646753151997, −0.50260738162946491454302416117,
2.66556439689707884125834754664, 2.96993060421344279609906898525, 5.26142299351763540120532101247, 6.31469848878554150475007376231, 7.81077694512016852692988918730, 8.655587623139364286921253295235, 10.40766918204209383892463113999, 11.52450671829523774937836840176, 12.65092677452223669752522962480, 13.70440765399936530678362079713