Properties

Label 2-74-37.7-c7-0-15
Degree $2$
Conductor $74$
Sign $-0.379 + 0.925i$
Analytic cond. $23.1164$
Root an. cond. $4.80796$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (7.51 − 2.73i)2-s + (6.89 + 2.50i)3-s + (49.0 − 41.1i)4-s + (−27.8 − 157. i)5-s + 58.6·6-s + (117. + 664. i)7-s + (256. − 443. i)8-s + (−1.63e3 − 1.37e3i)9-s + (−641. − 1.11e3i)10-s + (2.48e3 − 4.30e3i)11-s + (441. − 160. i)12-s + (2.63e3 − 2.20e3i)13-s + (2.69e3 + 4.67e3i)14-s + (204. − 1.15e3i)15-s + (711. − 4.03e3i)16-s + (−9.59e3 − 8.05e3i)17-s + ⋯
L(s)  = 1  + (0.664 − 0.241i)2-s + (0.147 + 0.0536i)3-s + (0.383 − 0.321i)4-s + (−0.0996 − 0.565i)5-s + 0.110·6-s + (0.129 + 0.732i)7-s + (0.176 − 0.306i)8-s + (−0.747 − 0.626i)9-s + (−0.202 − 0.351i)10-s + (0.563 − 0.975i)11-s + (0.0736 − 0.0268i)12-s + (0.332 − 0.278i)13-s + (0.262 + 0.455i)14-s + (0.0156 − 0.0886i)15-s + (0.0434 − 0.246i)16-s + (−0.473 − 0.397i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.379 + 0.925i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.379 + 0.925i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(74\)    =    \(2 \cdot 37\)
Sign: $-0.379 + 0.925i$
Analytic conductor: \(23.1164\)
Root analytic conductor: \(4.80796\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{74} (7, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 74,\ (\ :7/2),\ -0.379 + 0.925i)\)

Particular Values

\(L(4)\) \(\approx\) \(1.34351 - 2.00310i\)
\(L(\frac12)\) \(\approx\) \(1.34351 - 2.00310i\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-7.51 + 2.73i)T \)
37 \( 1 + (1.10e5 + 2.87e5i)T \)
good3 \( 1 + (-6.89 - 2.50i)T + (1.67e3 + 1.40e3i)T^{2} \)
5 \( 1 + (27.8 + 157. i)T + (-7.34e4 + 2.67e4i)T^{2} \)
7 \( 1 + (-117. - 664. i)T + (-7.73e5 + 2.81e5i)T^{2} \)
11 \( 1 + (-2.48e3 + 4.30e3i)T + (-9.74e6 - 1.68e7i)T^{2} \)
13 \( 1 + (-2.63e3 + 2.20e3i)T + (1.08e7 - 6.17e7i)T^{2} \)
17 \( 1 + (9.59e3 + 8.05e3i)T + (7.12e7 + 4.04e8i)T^{2} \)
19 \( 1 + (2.38e4 + 8.68e3i)T + (6.84e8 + 5.74e8i)T^{2} \)
23 \( 1 + (8.80e3 + 1.52e4i)T + (-1.70e9 + 2.94e9i)T^{2} \)
29 \( 1 + (-7.13e4 + 1.23e5i)T + (-8.62e9 - 1.49e10i)T^{2} \)
31 \( 1 + 1.66e5T + 2.75e10T^{2} \)
41 \( 1 + (-1.50e5 + 1.26e5i)T + (3.38e10 - 1.91e11i)T^{2} \)
43 \( 1 + 4.51e5T + 2.71e11T^{2} \)
47 \( 1 + (-4.26e5 - 7.38e5i)T + (-2.53e11 + 4.38e11i)T^{2} \)
53 \( 1 + (-1.21e5 + 6.91e5i)T + (-1.10e12 - 4.01e11i)T^{2} \)
59 \( 1 + (2.22e5 - 1.26e6i)T + (-2.33e12 - 8.51e11i)T^{2} \)
61 \( 1 + (-2.24e5 + 1.88e5i)T + (5.45e11 - 3.09e12i)T^{2} \)
67 \( 1 + (-4.77e5 - 2.70e6i)T + (-5.69e12 + 2.07e12i)T^{2} \)
71 \( 1 + (-3.46e6 - 1.26e6i)T + (6.96e12 + 5.84e12i)T^{2} \)
73 \( 1 - 1.21e6T + 1.10e13T^{2} \)
79 \( 1 + (-7.62e4 - 4.32e5i)T + (-1.80e13 + 6.56e12i)T^{2} \)
83 \( 1 + (-3.94e6 - 3.31e6i)T + (4.71e12 + 2.67e13i)T^{2} \)
89 \( 1 + (1.34e6 - 7.65e6i)T + (-4.15e13 - 1.51e13i)T^{2} \)
97 \( 1 + (-7.21e6 - 1.25e7i)T + (-4.03e13 + 6.99e13i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.71876766030534410157126308855, −11.81126399320905457070617556268, −10.91291711934051429337880006317, −9.146744823446519417736382426760, −8.449648745826992237243494014577, −6.44416289003070100781924541269, −5.43805736327235230171212415523, −3.92436303051668831131026815176, −2.53254938651782243113036113934, −0.63405505879536210548699421947, 1.91793013319248001785317279445, 3.53795749225543763849379988144, 4.81016053506904420655879523538, 6.44319598955102755171566503935, 7.38722535297602775067033604618, 8.704628305704977028349254570893, 10.43094298697956601769653580560, 11.26207212628816132281294147140, 12.53153417113118506185604163948, 13.67444236162597477469849856355

Graph of the $Z$-function along the critical line