L(s) = 1 | + (7.51 − 2.73i)2-s + (6.89 + 2.50i)3-s + (49.0 − 41.1i)4-s + (−27.8 − 157. i)5-s + 58.6·6-s + (117. + 664. i)7-s + (256. − 443. i)8-s + (−1.63e3 − 1.37e3i)9-s + (−641. − 1.11e3i)10-s + (2.48e3 − 4.30e3i)11-s + (441. − 160. i)12-s + (2.63e3 − 2.20e3i)13-s + (2.69e3 + 4.67e3i)14-s + (204. − 1.15e3i)15-s + (711. − 4.03e3i)16-s + (−9.59e3 − 8.05e3i)17-s + ⋯ |
L(s) = 1 | + (0.664 − 0.241i)2-s + (0.147 + 0.0536i)3-s + (0.383 − 0.321i)4-s + (−0.0996 − 0.565i)5-s + 0.110·6-s + (0.129 + 0.732i)7-s + (0.176 − 0.306i)8-s + (−0.747 − 0.626i)9-s + (−0.202 − 0.351i)10-s + (0.563 − 0.975i)11-s + (0.0736 − 0.0268i)12-s + (0.332 − 0.278i)13-s + (0.262 + 0.455i)14-s + (0.0156 − 0.0886i)15-s + (0.0434 − 0.246i)16-s + (−0.473 − 0.397i)17-s + ⋯ |
Λ(s)=(=(74s/2ΓC(s)L(s)(−0.379+0.925i)Λ(8−s)
Λ(s)=(=(74s/2ΓC(s+7/2)L(s)(−0.379+0.925i)Λ(1−s)
Degree: |
2 |
Conductor: |
74
= 2⋅37
|
Sign: |
−0.379+0.925i
|
Analytic conductor: |
23.1164 |
Root analytic conductor: |
4.80796 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ74(7,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 74, ( :7/2), −0.379+0.925i)
|
Particular Values
L(4) |
≈ |
1.34351−2.00310i |
L(21) |
≈ |
1.34351−2.00310i |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−7.51+2.73i)T |
| 37 | 1+(1.10e5+2.87e5i)T |
good | 3 | 1+(−6.89−2.50i)T+(1.67e3+1.40e3i)T2 |
| 5 | 1+(27.8+157.i)T+(−7.34e4+2.67e4i)T2 |
| 7 | 1+(−117.−664.i)T+(−7.73e5+2.81e5i)T2 |
| 11 | 1+(−2.48e3+4.30e3i)T+(−9.74e6−1.68e7i)T2 |
| 13 | 1+(−2.63e3+2.20e3i)T+(1.08e7−6.17e7i)T2 |
| 17 | 1+(9.59e3+8.05e3i)T+(7.12e7+4.04e8i)T2 |
| 19 | 1+(2.38e4+8.68e3i)T+(6.84e8+5.74e8i)T2 |
| 23 | 1+(8.80e3+1.52e4i)T+(−1.70e9+2.94e9i)T2 |
| 29 | 1+(−7.13e4+1.23e5i)T+(−8.62e9−1.49e10i)T2 |
| 31 | 1+1.66e5T+2.75e10T2 |
| 41 | 1+(−1.50e5+1.26e5i)T+(3.38e10−1.91e11i)T2 |
| 43 | 1+4.51e5T+2.71e11T2 |
| 47 | 1+(−4.26e5−7.38e5i)T+(−2.53e11+4.38e11i)T2 |
| 53 | 1+(−1.21e5+6.91e5i)T+(−1.10e12−4.01e11i)T2 |
| 59 | 1+(2.22e5−1.26e6i)T+(−2.33e12−8.51e11i)T2 |
| 61 | 1+(−2.24e5+1.88e5i)T+(5.45e11−3.09e12i)T2 |
| 67 | 1+(−4.77e5−2.70e6i)T+(−5.69e12+2.07e12i)T2 |
| 71 | 1+(−3.46e6−1.26e6i)T+(6.96e12+5.84e12i)T2 |
| 73 | 1−1.21e6T+1.10e13T2 |
| 79 | 1+(−7.62e4−4.32e5i)T+(−1.80e13+6.56e12i)T2 |
| 83 | 1+(−3.94e6−3.31e6i)T+(4.71e12+2.67e13i)T2 |
| 89 | 1+(1.34e6−7.65e6i)T+(−4.15e13−1.51e13i)T2 |
| 97 | 1+(−7.21e6−1.25e7i)T+(−4.03e13+6.99e13i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.71876766030534410157126308855, −11.81126399320905457070617556268, −10.91291711934051429337880006317, −9.146744823446519417736382426760, −8.449648745826992237243494014577, −6.44416289003070100781924541269, −5.43805736327235230171212415523, −3.92436303051668831131026815176, −2.53254938651782243113036113934, −0.63405505879536210548699421947,
1.91793013319248001785317279445, 3.53795749225543763849379988144, 4.81016053506904420655879523538, 6.44319598955102755171566503935, 7.38722535297602775067033604618, 8.704628305704977028349254570893, 10.43094298697956601769653580560, 11.26207212628816132281294147140, 12.53153417113118506185604163948, 13.67444236162597477469849856355