L(s) = 1 | + (7.51 − 2.73i)2-s + (−83.1 − 30.2i)3-s + (49.0 − 41.1i)4-s + (77.4 + 439. i)5-s − 707.·6-s + (−71.3 − 404. i)7-s + (256. − 443. i)8-s + (4.31e3 + 3.62e3i)9-s + (1.78e3 + 3.09e3i)10-s + (3.19e3 − 5.53e3i)11-s + (−5.31e3 + 1.93e3i)12-s + (−8.36e3 + 7.01e3i)13-s + (−1.64e3 − 2.84e3i)14-s + (6.85e3 − 3.88e4i)15-s + (711. − 4.03e3i)16-s + (6.93e3 + 5.82e3i)17-s + ⋯ |
L(s) = 1 | + (0.664 − 0.241i)2-s + (−1.77 − 0.646i)3-s + (0.383 − 0.321i)4-s + (0.277 + 1.57i)5-s − 1.33·6-s + (−0.0786 − 0.445i)7-s + (0.176 − 0.306i)8-s + (1.97 + 1.65i)9-s + (0.564 + 0.977i)10-s + (0.723 − 1.25i)11-s + (−0.888 + 0.323i)12-s + (−1.05 + 0.885i)13-s + (−0.160 − 0.277i)14-s + (0.524 − 2.97i)15-s + (0.0434 − 0.246i)16-s + (0.342 + 0.287i)17-s + ⋯ |
Λ(s)=(=(74s/2ΓC(s)L(s)(−0.501+0.865i)Λ(8−s)
Λ(s)=(=(74s/2ΓC(s+7/2)L(s)(−0.501+0.865i)Λ(1−s)
Degree: |
2 |
Conductor: |
74
= 2⋅37
|
Sign: |
−0.501+0.865i
|
Analytic conductor: |
23.1164 |
Root analytic conductor: |
4.80796 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ74(7,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 74, ( :7/2), −0.501+0.865i)
|
Particular Values
L(4) |
≈ |
0.518396−0.899435i |
L(21) |
≈ |
0.518396−0.899435i |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−7.51+2.73i)T |
| 37 | 1+(7.04e4+2.99e5i)T |
good | 3 | 1+(83.1+30.2i)T+(1.67e3+1.40e3i)T2 |
| 5 | 1+(−77.4−439.i)T+(−7.34e4+2.67e4i)T2 |
| 7 | 1+(71.3+404.i)T+(−7.73e5+2.81e5i)T2 |
| 11 | 1+(−3.19e3+5.53e3i)T+(−9.74e6−1.68e7i)T2 |
| 13 | 1+(8.36e3−7.01e3i)T+(1.08e7−6.17e7i)T2 |
| 17 | 1+(−6.93e3−5.82e3i)T+(7.12e7+4.04e8i)T2 |
| 19 | 1+(2.22e3+808.i)T+(6.84e8+5.74e8i)T2 |
| 23 | 1+(5.08e4+8.80e4i)T+(−1.70e9+2.94e9i)T2 |
| 29 | 1+(−8.22e4+1.42e5i)T+(−8.62e9−1.49e10i)T2 |
| 31 | 1+1.93e5T+2.75e10T2 |
| 41 | 1+(−2.94e5+2.47e5i)T+(3.38e10−1.91e11i)T2 |
| 43 | 1−1.82e5T+2.71e11T2 |
| 47 | 1+(−1.31e5−2.27e5i)T+(−2.53e11+4.38e11i)T2 |
| 53 | 1+(−1.31e5+7.46e5i)T+(−1.10e12−4.01e11i)T2 |
| 59 | 1+(1.49e4−8.45e4i)T+(−2.33e12−8.51e11i)T2 |
| 61 | 1+(−2.33e6+1.95e6i)T+(5.45e11−3.09e12i)T2 |
| 67 | 1+(6.80e4+3.85e5i)T+(−5.69e12+2.07e12i)T2 |
| 71 | 1+(5.49e6+1.99e6i)T+(6.96e12+5.84e12i)T2 |
| 73 | 1+8.45e5T+1.10e13T2 |
| 79 | 1+(−4.57e5−2.59e6i)T+(−1.80e13+6.56e12i)T2 |
| 83 | 1+(8.50e5+7.13e5i)T+(4.71e12+2.67e13i)T2 |
| 89 | 1+(−1.03e4+5.85e4i)T+(−4.15e13−1.51e13i)T2 |
| 97 | 1+(8.35e6+1.44e7i)T+(−4.03e13+6.99e13i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.50013646354547195593275706541, −11.59467839931693062812623185995, −10.88354553172813731691580756315, −10.12300832750271915555775113962, −7.29273887966035198805850891303, −6.50778782145857861843632240209, −5.81112749162626388380364456022, −4.11021693931712253239531793052, −2.16661773728995318547694333026, −0.38437910214300404961424058954,
1.29550664638881323854768007540, 4.24364636268110946984341028401, 5.14846000326333278955101971804, 5.71259540373690228682191914541, 7.26226237711689136990410851655, 9.302511856971263063757995876688, 10.15205157890496274902452260047, 11.84609665716626359419305357497, 12.23660940206451076097313777832, 12.96778995950231041213138917681