L(s) = 1 | + (−0.939 − 0.342i)2-s + (1.72 − 0.627i)3-s + (0.766 + 0.642i)4-s + (−0.326 + 1.85i)5-s − 1.83·6-s + (0.598 − 3.39i)7-s + (−0.500 − 0.866i)8-s + (0.278 − 0.233i)9-s + (0.939 − 1.62i)10-s + (1.40 + 2.43i)11-s + (1.72 + 0.627i)12-s + (−2.65 − 2.23i)13-s + (−1.72 + 2.98i)14-s + (0.598 + 3.39i)15-s + (0.173 + 0.984i)16-s + (−2.37 + 1.99i)17-s + ⋯ |
L(s) = 1 | + (−0.664 − 0.241i)2-s + (0.994 − 0.362i)3-s + (0.383 + 0.321i)4-s + (−0.145 + 0.827i)5-s − 0.748·6-s + (0.226 − 1.28i)7-s + (−0.176 − 0.306i)8-s + (0.0927 − 0.0777i)9-s + (0.297 − 0.514i)10-s + (0.423 + 0.733i)11-s + (0.497 + 0.181i)12-s + (−0.737 − 0.618i)13-s + (−0.460 + 0.797i)14-s + (0.154 + 0.876i)15-s + (0.0434 + 0.246i)16-s + (−0.575 + 0.483i)17-s + ⋯ |
Λ(s)=(=(74s/2ΓC(s)L(s)(0.928+0.370i)Λ(2−s)
Λ(s)=(=(74s/2ΓC(s+1/2)L(s)(0.928+0.370i)Λ(1−s)
Degree: |
2 |
Conductor: |
74
= 2⋅37
|
Sign: |
0.928+0.370i
|
Analytic conductor: |
0.590892 |
Root analytic conductor: |
0.768695 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ74(53,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 74, ( :1/2), 0.928+0.370i)
|
Particular Values
L(1) |
≈ |
0.870674−0.167383i |
L(21) |
≈ |
0.870674−0.167383i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.939+0.342i)T |
| 37 | 1+(2.56+5.51i)T |
good | 3 | 1+(−1.72+0.627i)T+(2.29−1.92i)T2 |
| 5 | 1+(0.326−1.85i)T+(−4.69−1.71i)T2 |
| 7 | 1+(−0.598+3.39i)T+(−6.57−2.39i)T2 |
| 11 | 1+(−1.40−2.43i)T+(−5.5+9.52i)T2 |
| 13 | 1+(2.65+2.23i)T+(2.25+12.8i)T2 |
| 17 | 1+(2.37−1.99i)T+(2.95−16.7i)T2 |
| 19 | 1+(6.99−2.54i)T+(14.5−12.2i)T2 |
| 23 | 1+(−0.321+0.557i)T+(−11.5−19.9i)T2 |
| 29 | 1+(1.08+1.87i)T+(−14.5+25.1i)T2 |
| 31 | 1−9.90T+31T2 |
| 41 | 1+(8.13+6.82i)T+(7.11+40.3i)T2 |
| 43 | 1−8.30T+43T2 |
| 47 | 1+(−3.92+6.80i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−0.839−4.76i)T+(−49.8+18.1i)T2 |
| 59 | 1+(−0.0961−0.545i)T+(−55.4+20.1i)T2 |
| 61 | 1+(−5.37−4.50i)T+(10.5+60.0i)T2 |
| 67 | 1+(−0.0366+0.207i)T+(−62.9−22.9i)T2 |
| 71 | 1+(4.75−1.72i)T+(54.3−45.6i)T2 |
| 73 | 1−10.2T+73T2 |
| 79 | 1+(0.330−1.87i)T+(−74.2−27.0i)T2 |
| 83 | 1+(−5.21+4.37i)T+(14.4−81.7i)T2 |
| 89 | 1+(1.68+9.54i)T+(−83.6+30.4i)T2 |
| 97 | 1+(8.52−14.7i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.57163821606939409590157019002, −13.56049440175055657754565301191, −12.37259948542458278860797179981, −10.79591377197980021092610537142, −10.19770910535915263496537469185, −8.659827450074097166176740484543, −7.61627413552245467125509416649, −6.81210004841551863407061843341, −3.98282362841921112276334608742, −2.31994716054009641416243844545,
2.54006356054050893070693495172, 4.71995734231250318682238379607, 6.43193263559365270436746016883, 8.417437348373399069943889553352, 8.724649244667358222488303155745, 9.610186624143061983498738984193, 11.35739359984355807894208009172, 12.35536288540429063027082934257, 13.83495500100852360719255545386, 14.93800715539082527281357025172