Properties

Label 2-74-1.1-c7-0-8
Degree $2$
Conductor $74$
Sign $1$
Analytic cond. $23.1164$
Root an. cond. $4.80796$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·2-s + 62.0·3-s + 64·4-s + 42.8·5-s − 496.·6-s + 819.·7-s − 512·8-s + 1.65e3·9-s − 342.·10-s + 728.·11-s + 3.96e3·12-s + 1.43e4·13-s − 6.55e3·14-s + 2.65e3·15-s + 4.09e3·16-s − 3.48e4·17-s − 1.32e4·18-s + 3.87e4·19-s + 2.74e3·20-s + 5.08e4·21-s − 5.83e3·22-s − 6.14e4·23-s − 3.17e4·24-s − 7.62e4·25-s − 1.14e5·26-s − 3.27e4·27-s + 5.24e4·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.32·3-s + 0.5·4-s + 0.153·5-s − 0.937·6-s + 0.902·7-s − 0.353·8-s + 0.758·9-s − 0.108·10-s + 0.165·11-s + 0.663·12-s + 1.80·13-s − 0.638·14-s + 0.203·15-s + 0.250·16-s − 1.72·17-s − 0.536·18-s + 1.29·19-s + 0.0766·20-s + 1.19·21-s − 0.116·22-s − 1.05·23-s − 0.468·24-s − 0.976·25-s − 1.27·26-s − 0.319·27-s + 0.451·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(74\)    =    \(2 \cdot 37\)
Sign: $1$
Analytic conductor: \(23.1164\)
Root analytic conductor: \(4.80796\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 74,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(2.632441148\)
\(L(\frac12)\) \(\approx\) \(2.632441148\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 8T \)
37 \( 1 + 5.06e4T \)
good3 \( 1 - 62.0T + 2.18e3T^{2} \)
5 \( 1 - 42.8T + 7.81e4T^{2} \)
7 \( 1 - 819.T + 8.23e5T^{2} \)
11 \( 1 - 728.T + 1.94e7T^{2} \)
13 \( 1 - 1.43e4T + 6.27e7T^{2} \)
17 \( 1 + 3.48e4T + 4.10e8T^{2} \)
19 \( 1 - 3.87e4T + 8.93e8T^{2} \)
23 \( 1 + 6.14e4T + 3.40e9T^{2} \)
29 \( 1 - 1.97e5T + 1.72e10T^{2} \)
31 \( 1 - 2.55e5T + 2.75e10T^{2} \)
41 \( 1 - 7.97e5T + 1.94e11T^{2} \)
43 \( 1 - 1.41e5T + 2.71e11T^{2} \)
47 \( 1 - 6.43e5T + 5.06e11T^{2} \)
53 \( 1 - 9.94e5T + 1.17e12T^{2} \)
59 \( 1 + 2.48e6T + 2.48e12T^{2} \)
61 \( 1 + 6.49e5T + 3.14e12T^{2} \)
67 \( 1 + 8.18e5T + 6.06e12T^{2} \)
71 \( 1 + 2.77e6T + 9.09e12T^{2} \)
73 \( 1 - 4.46e6T + 1.10e13T^{2} \)
79 \( 1 - 3.61e6T + 1.92e13T^{2} \)
83 \( 1 + 2.47e6T + 2.71e13T^{2} \)
89 \( 1 - 6.02e6T + 4.42e13T^{2} \)
97 \( 1 + 1.02e7T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.67777415214370083076010595469, −11.79244311522966693660340573043, −10.76471576410348553482768296803, −9.377339910894864726580943638083, −8.517306159320857213464598726570, −7.83122459663564787031766662487, −6.21661975984554573517147321830, −4.10187065682825513668347355537, −2.54499302609837275849153217123, −1.28407571223361304310102957593, 1.28407571223361304310102957593, 2.54499302609837275849153217123, 4.10187065682825513668347355537, 6.21661975984554573517147321830, 7.83122459663564787031766662487, 8.517306159320857213464598726570, 9.377339910894864726580943638083, 10.76471576410348553482768296803, 11.79244311522966693660340573043, 13.67777415214370083076010595469

Graph of the $Z$-function along the critical line