L(s) = 1 | − 8·2-s + 62.0·3-s + 64·4-s + 42.8·5-s − 496.·6-s + 819.·7-s − 512·8-s + 1.65e3·9-s − 342.·10-s + 728.·11-s + 3.96e3·12-s + 1.43e4·13-s − 6.55e3·14-s + 2.65e3·15-s + 4.09e3·16-s − 3.48e4·17-s − 1.32e4·18-s + 3.87e4·19-s + 2.74e3·20-s + 5.08e4·21-s − 5.83e3·22-s − 6.14e4·23-s − 3.17e4·24-s − 7.62e4·25-s − 1.14e5·26-s − 3.27e4·27-s + 5.24e4·28-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1.32·3-s + 0.5·4-s + 0.153·5-s − 0.937·6-s + 0.902·7-s − 0.353·8-s + 0.758·9-s − 0.108·10-s + 0.165·11-s + 0.663·12-s + 1.80·13-s − 0.638·14-s + 0.203·15-s + 0.250·16-s − 1.72·17-s − 0.536·18-s + 1.29·19-s + 0.0766·20-s + 1.19·21-s − 0.116·22-s − 1.05·23-s − 0.468·24-s − 0.976·25-s − 1.27·26-s − 0.319·27-s + 0.451·28-s + ⋯ |
Λ(s)=(=(74s/2ΓC(s)L(s)Λ(8−s)
Λ(s)=(=(74s/2ΓC(s+7/2)L(s)Λ(1−s)
Particular Values
L(4) |
≈ |
2.632441148 |
L(21) |
≈ |
2.632441148 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+8T |
| 37 | 1+5.06e4T |
good | 3 | 1−62.0T+2.18e3T2 |
| 5 | 1−42.8T+7.81e4T2 |
| 7 | 1−819.T+8.23e5T2 |
| 11 | 1−728.T+1.94e7T2 |
| 13 | 1−1.43e4T+6.27e7T2 |
| 17 | 1+3.48e4T+4.10e8T2 |
| 19 | 1−3.87e4T+8.93e8T2 |
| 23 | 1+6.14e4T+3.40e9T2 |
| 29 | 1−1.97e5T+1.72e10T2 |
| 31 | 1−2.55e5T+2.75e10T2 |
| 41 | 1−7.97e5T+1.94e11T2 |
| 43 | 1−1.41e5T+2.71e11T2 |
| 47 | 1−6.43e5T+5.06e11T2 |
| 53 | 1−9.94e5T+1.17e12T2 |
| 59 | 1+2.48e6T+2.48e12T2 |
| 61 | 1+6.49e5T+3.14e12T2 |
| 67 | 1+8.18e5T+6.06e12T2 |
| 71 | 1+2.77e6T+9.09e12T2 |
| 73 | 1−4.46e6T+1.10e13T2 |
| 79 | 1−3.61e6T+1.92e13T2 |
| 83 | 1+2.47e6T+2.71e13T2 |
| 89 | 1−6.02e6T+4.42e13T2 |
| 97 | 1+1.02e7T+8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.67777415214370083076010595469, −11.79244311522966693660340573043, −10.76471576410348553482768296803, −9.377339910894864726580943638083, −8.517306159320857213464598726570, −7.83122459663564787031766662487, −6.21661975984554573517147321830, −4.10187065682825513668347355537, −2.54499302609837275849153217123, −1.28407571223361304310102957593,
1.28407571223361304310102957593, 2.54499302609837275849153217123, 4.10187065682825513668347355537, 6.21661975984554573517147321830, 7.83122459663564787031766662487, 8.517306159320857213464598726570, 9.377339910894864726580943638083, 10.76471576410348553482768296803, 11.79244311522966693660340573043, 13.67777415214370083076010595469