Properties

Label 2-74-1.1-c7-0-17
Degree $2$
Conductor $74$
Sign $-1$
Analytic cond. $23.1164$
Root an. cond. $4.80796$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·2-s + 55.2·3-s + 64·4-s − 82.2·5-s − 441.·6-s + 195.·7-s − 512·8-s + 863.·9-s + 658.·10-s − 3.90e3·11-s + 3.53e3·12-s − 1.48e4·13-s − 1.56e3·14-s − 4.54e3·15-s + 4.09e3·16-s − 6.73e3·17-s − 6.90e3·18-s + 3.69e4·19-s − 5.26e3·20-s + 1.07e4·21-s + 3.12e4·22-s + 4.62e4·23-s − 2.82e4·24-s − 7.13e4·25-s + 1.18e5·26-s − 7.31e4·27-s + 1.25e4·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.18·3-s + 0.5·4-s − 0.294·5-s − 0.835·6-s + 0.215·7-s − 0.353·8-s + 0.394·9-s + 0.208·10-s − 0.883·11-s + 0.590·12-s − 1.87·13-s − 0.152·14-s − 0.347·15-s + 0.250·16-s − 0.332·17-s − 0.279·18-s + 1.23·19-s − 0.147·20-s + 0.254·21-s + 0.624·22-s + 0.793·23-s − 0.417·24-s − 0.913·25-s + 1.32·26-s − 0.714·27-s + 0.107·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(74\)    =    \(2 \cdot 37\)
Sign: $-1$
Analytic conductor: \(23.1164\)
Root analytic conductor: \(4.80796\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 74,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 8T \)
37 \( 1 - 5.06e4T \)
good3 \( 1 - 55.2T + 2.18e3T^{2} \)
5 \( 1 + 82.2T + 7.81e4T^{2} \)
7 \( 1 - 195.T + 8.23e5T^{2} \)
11 \( 1 + 3.90e3T + 1.94e7T^{2} \)
13 \( 1 + 1.48e4T + 6.27e7T^{2} \)
17 \( 1 + 6.73e3T + 4.10e8T^{2} \)
19 \( 1 - 3.69e4T + 8.93e8T^{2} \)
23 \( 1 - 4.62e4T + 3.40e9T^{2} \)
29 \( 1 - 6.00e4T + 1.72e10T^{2} \)
31 \( 1 + 3.05e5T + 2.75e10T^{2} \)
41 \( 1 + 6.70e5T + 1.94e11T^{2} \)
43 \( 1 - 2.20e5T + 2.71e11T^{2} \)
47 \( 1 - 2.92e5T + 5.06e11T^{2} \)
53 \( 1 + 7.15e5T + 1.17e12T^{2} \)
59 \( 1 - 9.88e5T + 2.48e12T^{2} \)
61 \( 1 + 3.06e6T + 3.14e12T^{2} \)
67 \( 1 - 7.27e5T + 6.06e12T^{2} \)
71 \( 1 - 5.23e6T + 9.09e12T^{2} \)
73 \( 1 + 2.48e6T + 1.10e13T^{2} \)
79 \( 1 - 6.57e6T + 1.92e13T^{2} \)
83 \( 1 + 4.65e6T + 2.71e13T^{2} \)
89 \( 1 - 1.44e6T + 4.42e13T^{2} \)
97 \( 1 + 5.97e5T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.57131314614407240130830775474, −11.34944216406116872741069675876, −9.962508126897688723390297842405, −9.130898114351751010074685737206, −7.893191366413452225076333575503, −7.31232586276366107171470739243, −5.13599974824715060865115092151, −3.18869547090167069367072090705, −2.09273615838921581829043172705, 0, 2.09273615838921581829043172705, 3.18869547090167069367072090705, 5.13599974824715060865115092151, 7.31232586276366107171470739243, 7.893191366413452225076333575503, 9.130898114351751010074685737206, 9.962508126897688723390297842405, 11.34944216406116872741069675876, 12.57131314614407240130830775474

Graph of the $Z$-function along the critical line