L(s) = 1 | − 8·2-s + 55.2·3-s + 64·4-s − 82.2·5-s − 441.·6-s + 195.·7-s − 512·8-s + 863.·9-s + 658.·10-s − 3.90e3·11-s + 3.53e3·12-s − 1.48e4·13-s − 1.56e3·14-s − 4.54e3·15-s + 4.09e3·16-s − 6.73e3·17-s − 6.90e3·18-s + 3.69e4·19-s − 5.26e3·20-s + 1.07e4·21-s + 3.12e4·22-s + 4.62e4·23-s − 2.82e4·24-s − 7.13e4·25-s + 1.18e5·26-s − 7.31e4·27-s + 1.25e4·28-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1.18·3-s + 0.5·4-s − 0.294·5-s − 0.835·6-s + 0.215·7-s − 0.353·8-s + 0.394·9-s + 0.208·10-s − 0.883·11-s + 0.590·12-s − 1.87·13-s − 0.152·14-s − 0.347·15-s + 0.250·16-s − 0.332·17-s − 0.279·18-s + 1.23·19-s − 0.147·20-s + 0.254·21-s + 0.624·22-s + 0.793·23-s − 0.417·24-s − 0.913·25-s + 1.32·26-s − 0.714·27-s + 0.107·28-s + ⋯ |
Λ(s)=(=(74s/2ΓC(s)L(s)−Λ(8−s)
Λ(s)=(=(74s/2ΓC(s+7/2)L(s)−Λ(1−s)
Particular Values
L(4) |
= |
0 |
L(21) |
= |
0 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+8T |
| 37 | 1−5.06e4T |
good | 3 | 1−55.2T+2.18e3T2 |
| 5 | 1+82.2T+7.81e4T2 |
| 7 | 1−195.T+8.23e5T2 |
| 11 | 1+3.90e3T+1.94e7T2 |
| 13 | 1+1.48e4T+6.27e7T2 |
| 17 | 1+6.73e3T+4.10e8T2 |
| 19 | 1−3.69e4T+8.93e8T2 |
| 23 | 1−4.62e4T+3.40e9T2 |
| 29 | 1−6.00e4T+1.72e10T2 |
| 31 | 1+3.05e5T+2.75e10T2 |
| 41 | 1+6.70e5T+1.94e11T2 |
| 43 | 1−2.20e5T+2.71e11T2 |
| 47 | 1−2.92e5T+5.06e11T2 |
| 53 | 1+7.15e5T+1.17e12T2 |
| 59 | 1−9.88e5T+2.48e12T2 |
| 61 | 1+3.06e6T+3.14e12T2 |
| 67 | 1−7.27e5T+6.06e12T2 |
| 71 | 1−5.23e6T+9.09e12T2 |
| 73 | 1+2.48e6T+1.10e13T2 |
| 79 | 1−6.57e6T+1.92e13T2 |
| 83 | 1+4.65e6T+2.71e13T2 |
| 89 | 1−1.44e6T+4.42e13T2 |
| 97 | 1+5.97e5T+8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.57131314614407240130830775474, −11.34944216406116872741069675876, −9.962508126897688723390297842405, −9.130898114351751010074685737206, −7.893191366413452225076333575503, −7.31232586276366107171470739243, −5.13599974824715060865115092151, −3.18869547090167069367072090705, −2.09273615838921581829043172705, 0,
2.09273615838921581829043172705, 3.18869547090167069367072090705, 5.13599974824715060865115092151, 7.31232586276366107171470739243, 7.893191366413452225076333575503, 9.130898114351751010074685737206, 9.962508126897688723390297842405, 11.34944216406116872741069675876, 12.57131314614407240130830775474