Properties

Label 2-74-1.1-c7-0-16
Degree $2$
Conductor $74$
Sign $-1$
Analytic cond. $23.1164$
Root an. cond. $4.80796$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·2-s + 20.4·3-s + 64·4-s + 375.·5-s − 163.·6-s − 980.·7-s − 512·8-s − 1.76e3·9-s − 3.00e3·10-s − 3.37e3·11-s + 1.31e3·12-s + 3.43e3·13-s + 7.84e3·14-s + 7.69e3·15-s + 4.09e3·16-s − 4.74e3·17-s + 1.41e4·18-s − 1.12e4·19-s + 2.40e4·20-s − 2.01e4·21-s + 2.70e4·22-s − 1.77e4·23-s − 1.04e4·24-s + 6.27e4·25-s − 2.74e4·26-s − 8.10e4·27-s − 6.27e4·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.438·3-s + 0.5·4-s + 1.34·5-s − 0.309·6-s − 1.08·7-s − 0.353·8-s − 0.807·9-s − 0.949·10-s − 0.764·11-s + 0.219·12-s + 0.433·13-s + 0.764·14-s + 0.588·15-s + 0.250·16-s − 0.234·17-s + 0.571·18-s − 0.376·19-s + 0.671·20-s − 0.473·21-s + 0.540·22-s − 0.303·23-s − 0.154·24-s + 0.802·25-s − 0.306·26-s − 0.792·27-s − 0.540·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(74\)    =    \(2 \cdot 37\)
Sign: $-1$
Analytic conductor: \(23.1164\)
Root analytic conductor: \(4.80796\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 74,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 8T \)
37 \( 1 - 5.06e4T \)
good3 \( 1 - 20.4T + 2.18e3T^{2} \)
5 \( 1 - 375.T + 7.81e4T^{2} \)
7 \( 1 + 980.T + 8.23e5T^{2} \)
11 \( 1 + 3.37e3T + 1.94e7T^{2} \)
13 \( 1 - 3.43e3T + 6.27e7T^{2} \)
17 \( 1 + 4.74e3T + 4.10e8T^{2} \)
19 \( 1 + 1.12e4T + 8.93e8T^{2} \)
23 \( 1 + 1.77e4T + 3.40e9T^{2} \)
29 \( 1 + 1.06e5T + 1.72e10T^{2} \)
31 \( 1 + 3.13e4T + 2.75e10T^{2} \)
41 \( 1 - 2.78e5T + 1.94e11T^{2} \)
43 \( 1 + 6.06e5T + 2.71e11T^{2} \)
47 \( 1 + 1.13e6T + 5.06e11T^{2} \)
53 \( 1 + 8.94e5T + 1.17e12T^{2} \)
59 \( 1 + 8.97e5T + 2.48e12T^{2} \)
61 \( 1 - 1.69e6T + 3.14e12T^{2} \)
67 \( 1 - 2.02e6T + 6.06e12T^{2} \)
71 \( 1 + 5.85e5T + 9.09e12T^{2} \)
73 \( 1 - 4.28e5T + 1.10e13T^{2} \)
79 \( 1 + 1.57e6T + 1.92e13T^{2} \)
83 \( 1 + 5.37e5T + 2.71e13T^{2} \)
89 \( 1 + 1.84e6T + 4.42e13T^{2} \)
97 \( 1 + 6.63e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.84750714619757282843393535269, −11.15151075117957220856752637879, −9.989728201688939474581122945223, −9.301337930865519238212383203799, −8.190153499014499833802761633206, −6.55412350511213497195160477471, −5.63118640598797215313043541416, −3.12971676067467901245787159769, −1.99323057322219530211809715948, 0, 1.99323057322219530211809715948, 3.12971676067467901245787159769, 5.63118640598797215313043541416, 6.55412350511213497195160477471, 8.190153499014499833802761633206, 9.301337930865519238212383203799, 9.989728201688939474581122945223, 11.15151075117957220856752637879, 12.84750714619757282843393535269

Graph of the $Z$-function along the critical line