L(s) = 1 | − 8·2-s + 20.4·3-s + 64·4-s + 375.·5-s − 163.·6-s − 980.·7-s − 512·8-s − 1.76e3·9-s − 3.00e3·10-s − 3.37e3·11-s + 1.31e3·12-s + 3.43e3·13-s + 7.84e3·14-s + 7.69e3·15-s + 4.09e3·16-s − 4.74e3·17-s + 1.41e4·18-s − 1.12e4·19-s + 2.40e4·20-s − 2.01e4·21-s + 2.70e4·22-s − 1.77e4·23-s − 1.04e4·24-s + 6.27e4·25-s − 2.74e4·26-s − 8.10e4·27-s − 6.27e4·28-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.438·3-s + 0.5·4-s + 1.34·5-s − 0.309·6-s − 1.08·7-s − 0.353·8-s − 0.807·9-s − 0.949·10-s − 0.764·11-s + 0.219·12-s + 0.433·13-s + 0.764·14-s + 0.588·15-s + 0.250·16-s − 0.234·17-s + 0.571·18-s − 0.376·19-s + 0.671·20-s − 0.473·21-s + 0.540·22-s − 0.303·23-s − 0.154·24-s + 0.802·25-s − 0.306·26-s − 0.792·27-s − 0.540·28-s + ⋯ |
Λ(s)=(=(74s/2ΓC(s)L(s)−Λ(8−s)
Λ(s)=(=(74s/2ΓC(s+7/2)L(s)−Λ(1−s)
Particular Values
L(4) |
= |
0 |
L(21) |
= |
0 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+8T |
| 37 | 1−5.06e4T |
good | 3 | 1−20.4T+2.18e3T2 |
| 5 | 1−375.T+7.81e4T2 |
| 7 | 1+980.T+8.23e5T2 |
| 11 | 1+3.37e3T+1.94e7T2 |
| 13 | 1−3.43e3T+6.27e7T2 |
| 17 | 1+4.74e3T+4.10e8T2 |
| 19 | 1+1.12e4T+8.93e8T2 |
| 23 | 1+1.77e4T+3.40e9T2 |
| 29 | 1+1.06e5T+1.72e10T2 |
| 31 | 1+3.13e4T+2.75e10T2 |
| 41 | 1−2.78e5T+1.94e11T2 |
| 43 | 1+6.06e5T+2.71e11T2 |
| 47 | 1+1.13e6T+5.06e11T2 |
| 53 | 1+8.94e5T+1.17e12T2 |
| 59 | 1+8.97e5T+2.48e12T2 |
| 61 | 1−1.69e6T+3.14e12T2 |
| 67 | 1−2.02e6T+6.06e12T2 |
| 71 | 1+5.85e5T+9.09e12T2 |
| 73 | 1−4.28e5T+1.10e13T2 |
| 79 | 1+1.57e6T+1.92e13T2 |
| 83 | 1+5.37e5T+2.71e13T2 |
| 89 | 1+1.84e6T+4.42e13T2 |
| 97 | 1+6.63e6T+8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.84750714619757282843393535269, −11.15151075117957220856752637879, −9.989728201688939474581122945223, −9.301337930865519238212383203799, −8.190153499014499833802761633206, −6.55412350511213497195160477471, −5.63118640598797215313043541416, −3.12971676067467901245787159769, −1.99323057322219530211809715948, 0,
1.99323057322219530211809715948, 3.12971676067467901245787159769, 5.63118640598797215313043541416, 6.55412350511213497195160477471, 8.190153499014499833802761633206, 9.301337930865519238212383203799, 9.989728201688939474581122945223, 11.15151075117957220856752637879, 12.84750714619757282843393535269