L(s) = 1 | + (−0.453 − 0.891i)2-s + (−0.587 + 0.809i)4-s + (−0.589 − 3.71i)5-s + (3.08 − 2.63i)7-s + (0.987 + 0.156i)8-s + (−3.04 + 2.21i)10-s + (−1.49 − 0.915i)11-s + (4.02 − 0.316i)13-s + (−3.74 − 1.55i)14-s + (−0.309 − 0.951i)16-s + (−2.51 + 0.604i)17-s + (−0.625 − 0.0492i)19-s + (3.35 + 1.70i)20-s + (−0.137 + 1.74i)22-s + (1.23 − 3.81i)23-s + ⋯ |
L(s) = 1 | + (−0.321 − 0.630i)2-s + (−0.293 + 0.404i)4-s + (−0.263 − 1.66i)5-s + (1.16 − 0.995i)7-s + (0.349 + 0.0553i)8-s + (−0.963 + 0.700i)10-s + (−0.450 − 0.276i)11-s + (1.11 − 0.0878i)13-s + (−1.00 − 0.414i)14-s + (−0.0772 − 0.237i)16-s + (−0.610 + 0.146i)17-s + (−0.143 − 0.0112i)19-s + (0.750 + 0.382i)20-s + (−0.0293 + 0.372i)22-s + (0.258 − 0.794i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 738 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.890 + 0.454i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 738 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.890 + 0.454i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.293113 - 1.22072i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.293113 - 1.22072i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.453 + 0.891i)T \) |
| 3 | \( 1 \) |
| 41 | \( 1 + (3.76 - 5.18i)T \) |
good | 5 | \( 1 + (0.589 + 3.71i)T + (-4.75 + 1.54i)T^{2} \) |
| 7 | \( 1 + (-3.08 + 2.63i)T + (1.09 - 6.91i)T^{2} \) |
| 11 | \( 1 + (1.49 + 0.915i)T + (4.99 + 9.80i)T^{2} \) |
| 13 | \( 1 + (-4.02 + 0.316i)T + (12.8 - 2.03i)T^{2} \) |
| 17 | \( 1 + (2.51 - 0.604i)T + (15.1 - 7.71i)T^{2} \) |
| 19 | \( 1 + (0.625 + 0.0492i)T + (18.7 + 2.97i)T^{2} \) |
| 23 | \( 1 + (-1.23 + 3.81i)T + (-18.6 - 13.5i)T^{2} \) |
| 29 | \( 1 + (-9.24 - 2.21i)T + (25.8 + 13.1i)T^{2} \) |
| 31 | \( 1 + (-4.07 - 5.60i)T + (-9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (8.27 + 6.01i)T + (11.4 + 35.1i)T^{2} \) |
| 43 | \( 1 + (6.60 - 3.36i)T + (25.2 - 34.7i)T^{2} \) |
| 47 | \( 1 + (4.17 - 4.88i)T + (-7.35 - 46.4i)T^{2} \) |
| 53 | \( 1 + (-2.57 + 10.7i)T + (-47.2 - 24.0i)T^{2} \) |
| 59 | \( 1 + (3.87 + 1.26i)T + (47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (-2.29 + 4.50i)T + (-35.8 - 49.3i)T^{2} \) |
| 67 | \( 1 + (3.42 - 2.09i)T + (30.4 - 59.6i)T^{2} \) |
| 71 | \( 1 + (0.573 - 0.935i)T + (-32.2 - 63.2i)T^{2} \) |
| 73 | \( 1 + (6.20 + 6.20i)T + 73iT^{2} \) |
| 79 | \( 1 + (-9.71 + 4.02i)T + (55.8 - 55.8i)T^{2} \) |
| 83 | \( 1 + 5.82iT - 83T^{2} \) |
| 89 | \( 1 + (-4.41 - 5.16i)T + (-13.9 + 87.9i)T^{2} \) |
| 97 | \( 1 + (-3.55 - 5.80i)T + (-44.0 + 86.4i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.23356855140774731820739614788, −8.849939612159040195614256556884, −8.456776155181256047113247871578, −7.922334864613335167899061119501, −6.55903464294749877868885925280, −4.91219028779031853281284651468, −4.68926756068618086765661101962, −3.51107536107720694937841604902, −1.64867382794436400898445631549, −0.77950336220301689949751124283,
1.95273940363793313156431297992, 3.10915369387108387454150059971, 4.50398430769725438207860100550, 5.61469104351964704649560390512, 6.47962008790588345108527438787, 7.22367071812432272865018805844, 8.216699797174325313682810963109, 8.681700918473829820124844181982, 10.01382291285165760955301781172, 10.67340185275762802856264154352