L(s) = 1 | − 2.56·3-s − 5-s − 1.56·7-s + 3.56·9-s − 2·11-s − 0.561·13-s + 2.56·15-s − 1.56·17-s − 6·19-s + 4·21-s + 23-s + 25-s − 1.43·27-s + 2.12·29-s − 9.24·31-s + 5.12·33-s + 1.56·35-s + 0.438·37-s + 1.43·39-s − 4.12·41-s − 3.56·45-s − 7.68·47-s − 4.56·49-s + 4·51-s + 0.438·53-s + 2·55-s + 15.3·57-s + ⋯ |
L(s) = 1 | − 1.47·3-s − 0.447·5-s − 0.590·7-s + 1.18·9-s − 0.603·11-s − 0.155·13-s + 0.661·15-s − 0.378·17-s − 1.37·19-s + 0.872·21-s + 0.208·23-s + 0.200·25-s − 0.276·27-s + 0.394·29-s − 1.66·31-s + 0.891·33-s + 0.263·35-s + 0.0720·37-s + 0.230·39-s − 0.643·41-s − 0.530·45-s − 1.12·47-s − 0.651·49-s + 0.560·51-s + 0.0602·53-s + 0.269·55-s + 2.03·57-s + ⋯ |
Λ(s)=(=(7360s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(7360s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.1289967899 |
L(21) |
≈ |
0.1289967899 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+T |
| 23 | 1−T |
good | 3 | 1+2.56T+3T2 |
| 7 | 1+1.56T+7T2 |
| 11 | 1+2T+11T2 |
| 13 | 1+0.561T+13T2 |
| 17 | 1+1.56T+17T2 |
| 19 | 1+6T+19T2 |
| 29 | 1−2.12T+29T2 |
| 31 | 1+9.24T+31T2 |
| 37 | 1−0.438T+37T2 |
| 41 | 1+4.12T+41T2 |
| 43 | 1+43T2 |
| 47 | 1+7.68T+47T2 |
| 53 | 1−0.438T+53T2 |
| 59 | 1+8.68T+59T2 |
| 61 | 1+1.12T+61T2 |
| 67 | 1−4.43T+67T2 |
| 71 | 1−1.87T+71T2 |
| 73 | 1+8.56T+73T2 |
| 79 | 1−13.1T+79T2 |
| 83 | 1+14.9T+83T2 |
| 89 | 1+2.24T+89T2 |
| 97 | 1+4.87T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.80337201638930396026904987793, −6.90705818757530641793191366558, −6.55186184829324675613080525884, −5.82523467346732724361261848658, −5.12464647385414978552669869920, −4.53166996611470291734280220608, −3.70876848149490520475873350230, −2.72982507247659226570294411801, −1.59020388430224735192338928215, −0.19297313723472051299983867567,
0.19297313723472051299983867567, 1.59020388430224735192338928215, 2.72982507247659226570294411801, 3.70876848149490520475873350230, 4.53166996611470291734280220608, 5.12464647385414978552669869920, 5.82523467346732724361261848658, 6.55186184829324675613080525884, 6.90705818757530641793191366558, 7.80337201638930396026904987793