Properties

Label 2-7360-1.1-c1-0-31
Degree $2$
Conductor $7360$
Sign $1$
Analytic cond. $58.7698$
Root an. cond. $7.66615$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 5-s + 2·7-s + 6·9-s − 13-s + 3·15-s − 6·21-s − 23-s + 25-s − 9·27-s + 3·29-s − 3·31-s − 2·35-s + 8·37-s + 3·39-s + 3·41-s − 2·43-s − 6·45-s + 11·47-s − 3·49-s + 14·53-s − 8·59-s + 4·61-s + 12·63-s + 65-s − 4·67-s + 3·69-s + ⋯
L(s)  = 1  − 1.73·3-s − 0.447·5-s + 0.755·7-s + 2·9-s − 0.277·13-s + 0.774·15-s − 1.30·21-s − 0.208·23-s + 1/5·25-s − 1.73·27-s + 0.557·29-s − 0.538·31-s − 0.338·35-s + 1.31·37-s + 0.480·39-s + 0.468·41-s − 0.304·43-s − 0.894·45-s + 1.60·47-s − 3/7·49-s + 1.92·53-s − 1.04·59-s + 0.512·61-s + 1.51·63-s + 0.124·65-s − 0.488·67-s + 0.361·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7360\)    =    \(2^{6} \cdot 5 \cdot 23\)
Sign: $1$
Analytic conductor: \(58.7698\)
Root analytic conductor: \(7.66615\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7360,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9124687647\)
\(L(\frac12)\) \(\approx\) \(0.9124687647\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
23 \( 1 + T \)
good3 \( 1 + p T + p T^{2} \)
7 \( 1 - 2 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 + T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 + p T^{2} \)
29 \( 1 - 3 T + p T^{2} \)
31 \( 1 + 3 T + p T^{2} \)
37 \( 1 - 8 T + p T^{2} \)
41 \( 1 - 3 T + p T^{2} \)
43 \( 1 + 2 T + p T^{2} \)
47 \( 1 - 11 T + p T^{2} \)
53 \( 1 - 14 T + p T^{2} \)
59 \( 1 + 8 T + p T^{2} \)
61 \( 1 - 4 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + 7 T + p T^{2} \)
73 \( 1 + 9 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 + 2 T + p T^{2} \)
97 \( 1 - 18 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.61097695431891812572771540551, −7.23894765301243027339221170097, −6.36358694667981234706594365623, −5.78404075969593536096693616107, −5.12820814876093260820687152704, −4.49132162780431694098830286455, −3.94355360286602801503349744631, −2.60142185594210330236613786748, −1.44280074660581855359414549843, −0.56923778323449802951397178654, 0.56923778323449802951397178654, 1.44280074660581855359414549843, 2.60142185594210330236613786748, 3.94355360286602801503349744631, 4.49132162780431694098830286455, 5.12820814876093260820687152704, 5.78404075969593536096693616107, 6.36358694667981234706594365623, 7.23894765301243027339221170097, 7.61097695431891812572771540551

Graph of the $Z$-function along the critical line