L(s) = 1 | − 3·3-s − 5-s + 2·7-s + 6·9-s − 13-s + 3·15-s − 6·21-s − 23-s + 25-s − 9·27-s + 3·29-s − 3·31-s − 2·35-s + 8·37-s + 3·39-s + 3·41-s − 2·43-s − 6·45-s + 11·47-s − 3·49-s + 14·53-s − 8·59-s + 4·61-s + 12·63-s + 65-s − 4·67-s + 3·69-s + ⋯ |
L(s) = 1 | − 1.73·3-s − 0.447·5-s + 0.755·7-s + 2·9-s − 0.277·13-s + 0.774·15-s − 1.30·21-s − 0.208·23-s + 1/5·25-s − 1.73·27-s + 0.557·29-s − 0.538·31-s − 0.338·35-s + 1.31·37-s + 0.480·39-s + 0.468·41-s − 0.304·43-s − 0.894·45-s + 1.60·47-s − 3/7·49-s + 1.92·53-s − 1.04·59-s + 0.512·61-s + 1.51·63-s + 0.124·65-s − 0.488·67-s + 0.361·69-s + ⋯ |
Λ(s)=(=(7360s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(7360s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.9124687647 |
L(21) |
≈ |
0.9124687647 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+T |
| 23 | 1+T |
good | 3 | 1+pT+pT2 |
| 7 | 1−2T+pT2 |
| 11 | 1+pT2 |
| 13 | 1+T+pT2 |
| 17 | 1+pT2 |
| 19 | 1+pT2 |
| 29 | 1−3T+pT2 |
| 31 | 1+3T+pT2 |
| 37 | 1−8T+pT2 |
| 41 | 1−3T+pT2 |
| 43 | 1+2T+pT2 |
| 47 | 1−11T+pT2 |
| 53 | 1−14T+pT2 |
| 59 | 1+8T+pT2 |
| 61 | 1−4T+pT2 |
| 67 | 1+4T+pT2 |
| 71 | 1+7T+pT2 |
| 73 | 1+9T+pT2 |
| 79 | 1+pT2 |
| 83 | 1−4T+pT2 |
| 89 | 1+2T+pT2 |
| 97 | 1−18T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.61097695431891812572771540551, −7.23894765301243027339221170097, −6.36358694667981234706594365623, −5.78404075969593536096693616107, −5.12820814876093260820687152704, −4.49132162780431694098830286455, −3.94355360286602801503349744631, −2.60142185594210330236613786748, −1.44280074660581855359414549843, −0.56923778323449802951397178654,
0.56923778323449802951397178654, 1.44280074660581855359414549843, 2.60142185594210330236613786748, 3.94355360286602801503349744631, 4.49132162780431694098830286455, 5.12820814876093260820687152704, 5.78404075969593536096693616107, 6.36358694667981234706594365623, 7.23894765301243027339221170097, 7.61097695431891812572771540551