L(s) = 1 | + 1.41·2-s + 3-s + 1.00·4-s − 5-s + 1.41·6-s + 9-s − 1.41·10-s + 1.00·12-s − 15-s − 0.999·16-s + 1.41·18-s − 1.41·19-s − 1.00·20-s − 1.41·23-s + 25-s + 27-s − 1.41·30-s + 1.41·31-s − 1.41·32-s + 1.00·36-s − 2.00·38-s − 45-s − 2.00·46-s − 0.999·48-s + 1.41·50-s − 1.41·53-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 3-s + 1.00·4-s − 5-s + 1.41·6-s + 9-s − 1.41·10-s + 1.00·12-s − 15-s − 0.999·16-s + 1.41·18-s − 1.41·19-s − 1.00·20-s − 1.41·23-s + 25-s + 27-s − 1.41·30-s + 1.41·31-s − 1.41·32-s + 1.00·36-s − 2.00·38-s − 45-s − 2.00·46-s − 0.999·48-s + 1.41·50-s − 1.41·53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.109160826\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.109160826\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - T \) |
| 5 | \( 1 + T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 - 1.41T + T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + 1.41T + T^{2} \) |
| 23 | \( 1 + 1.41T + T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 - 1.41T + T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + 1.41T + T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - 1.41T + T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.77768093268297960775342011246, −9.752931178064457392572862024245, −8.595093423959007355677406077621, −8.060314826854830759034884489992, −6.96371513771519269028208804194, −6.14663827348177540740676776082, −4.69867315682297751960105926440, −4.14552515157552891623268802086, −3.32584452150696290349171029178, −2.27087558023038572895945376674,
2.27087558023038572895945376674, 3.32584452150696290349171029178, 4.14552515157552891623268802086, 4.69867315682297751960105926440, 6.14663827348177540740676776082, 6.96371513771519269028208804194, 8.060314826854830759034884489992, 8.595093423959007355677406077621, 9.752931178064457392572862024245, 10.77768093268297960775342011246