| L(s)  = 1 | + 2.20·2-s   + (−1.59 + 0.672i)3-s   + 2.87·4-s   + (−1.33 − 1.79i)5-s   + (−3.52 + 1.48i)6-s     + 1.94·8-s   + (2.09 − 2.14i)9-s   + (−2.94 − 3.96i)10-s   − 3.81i·11-s   + (−4.59 + 1.93i)12-s   + 6.50·13-s     + (3.33 + 1.97i)15-s   − 1.46·16-s   − 2.94i·17-s   + (4.63 − 4.74i)18-s   − 2.03i·19-s  + ⋯ | 
| L(s)  = 1 | + 1.56·2-s   + (−0.921 + 0.388i)3-s   + 1.43·4-s   + (−0.595 − 0.803i)5-s   + (−1.43 + 0.606i)6-s     + 0.687·8-s   + (0.698 − 0.715i)9-s   + (−0.930 − 1.25i)10-s   − 1.15i·11-s   + (−1.32 + 0.558i)12-s   + 1.80·13-s     + (0.860 + 0.509i)15-s   − 0.366·16-s   − 0.713i·17-s   + (1.09 − 1.11i)18-s   − 0.466i·19-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.577 + 0.816i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.577 + 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(\approx\) | \(2.11623 - 1.09573i\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(2.11623 - 1.09573i\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | 
|---|
| bad | 3 | \( 1 + (1.59 - 0.672i)T \) | 
|  | 5 | \( 1 + (1.33 + 1.79i)T \) | 
|  | 7 | \( 1 \) | 
| good | 2 | \( 1 - 2.20T + 2T^{2} \) | 
|  | 11 | \( 1 + 3.81iT - 11T^{2} \) | 
|  | 13 | \( 1 - 6.50T + 13T^{2} \) | 
|  | 17 | \( 1 + 2.94iT - 17T^{2} \) | 
|  | 19 | \( 1 + 2.03iT - 19T^{2} \) | 
|  | 23 | \( 1 - 3.00T + 23T^{2} \) | 
|  | 29 | \( 1 + 2.25iT - 29T^{2} \) | 
|  | 31 | \( 1 + 6.66iT - 31T^{2} \) | 
|  | 37 | \( 1 + 3.36iT - 37T^{2} \) | 
|  | 41 | \( 1 - 3.51T + 41T^{2} \) | 
|  | 43 | \( 1 - 7.03iT - 43T^{2} \) | 
|  | 47 | \( 1 - 5.01iT - 47T^{2} \) | 
|  | 53 | \( 1 - 1.93T + 53T^{2} \) | 
|  | 59 | \( 1 + 7.93T + 59T^{2} \) | 
|  | 61 | \( 1 - 13.6iT - 61T^{2} \) | 
|  | 67 | \( 1 - 10.7iT - 67T^{2} \) | 
|  | 71 | \( 1 + 10.9iT - 71T^{2} \) | 
|  | 73 | \( 1 - 3.30T + 73T^{2} \) | 
|  | 79 | \( 1 + 5.84T + 79T^{2} \) | 
|  | 83 | \( 1 - 2.66iT - 83T^{2} \) | 
|  | 89 | \( 1 + 13.5T + 89T^{2} \) | 
|  | 97 | \( 1 - 4.46T + 97T^{2} \) | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−10.93301843894301442919077356085, −9.355460695632235591896599177010, −8.599170944962777039046427249857, −7.30810930191706173209747394489, −6.06985054164498159304404563738, −5.77995876747166557751064803975, −4.69328028638037637133445304635, −4.03514697579625991412132295654, −3.16446787402903989200857722946, −0.894763379409199846864302842472, 
1.78552950119263528498553612313, 3.33011865316252625274298729232, 4.12669709546072409014480986369, 5.06844404417235034972374873041, 6.08691041186726036232524374500, 6.65269285952482635772693854377, 7.39085578740451005963563014135, 8.573732931158506831992676325675, 10.20243078169684753873470959236, 10.93383822154422195346996978985
