Properties

Label 2-735-1.1-c3-0-75
Degree $2$
Conductor $735$
Sign $-1$
Analytic cond. $43.3664$
Root an. cond. $6.58531$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.53·2-s − 3·3-s + 12.5·4-s − 5·5-s − 13.5·6-s + 20.5·8-s + 9·9-s − 22.6·10-s − 19.0·11-s − 37.5·12-s + 2.93·13-s + 15·15-s − 7.21·16-s + 6.49·17-s + 40.7·18-s + 5.43·19-s − 62.6·20-s − 86.3·22-s + 49.3·23-s − 61.5·24-s + 25·25-s + 13.3·26-s − 27·27-s − 291.·29-s + 67.9·30-s − 244.·31-s − 196.·32-s + ⋯
L(s)  = 1  + 1.60·2-s − 0.577·3-s + 1.56·4-s − 0.447·5-s − 0.924·6-s + 0.907·8-s + 0.333·9-s − 0.716·10-s − 0.522·11-s − 0.904·12-s + 0.0626·13-s + 0.258·15-s − 0.112·16-s + 0.0927·17-s + 0.533·18-s + 0.0656·19-s − 0.700·20-s − 0.837·22-s + 0.447·23-s − 0.523·24-s + 0.200·25-s + 0.100·26-s − 0.192·27-s − 1.86·29-s + 0.413·30-s − 1.41·31-s − 1.08·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(735\)    =    \(3 \cdot 5 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(43.3664\)
Root analytic conductor: \(6.58531\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 735,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
5 \( 1 + 5T \)
7 \( 1 \)
good2 \( 1 - 4.53T + 8T^{2} \)
11 \( 1 + 19.0T + 1.33e3T^{2} \)
13 \( 1 - 2.93T + 2.19e3T^{2} \)
17 \( 1 - 6.49T + 4.91e3T^{2} \)
19 \( 1 - 5.43T + 6.85e3T^{2} \)
23 \( 1 - 49.3T + 1.21e4T^{2} \)
29 \( 1 + 291.T + 2.43e4T^{2} \)
31 \( 1 + 244.T + 2.97e4T^{2} \)
37 \( 1 + 193.T + 5.06e4T^{2} \)
41 \( 1 + 315.T + 6.89e4T^{2} \)
43 \( 1 + 300.T + 7.95e4T^{2} \)
47 \( 1 + 86.5T + 1.03e5T^{2} \)
53 \( 1 - 509.T + 1.48e5T^{2} \)
59 \( 1 - 83.3T + 2.05e5T^{2} \)
61 \( 1 - 5.25T + 2.26e5T^{2} \)
67 \( 1 - 205.T + 3.00e5T^{2} \)
71 \( 1 - 1.00e3T + 3.57e5T^{2} \)
73 \( 1 - 1.00e3T + 3.89e5T^{2} \)
79 \( 1 + 863.T + 4.93e5T^{2} \)
83 \( 1 + 1.33e3T + 5.71e5T^{2} \)
89 \( 1 + 326.T + 7.04e5T^{2} \)
97 \( 1 + 1.52e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.788231791734121133244800726488, −8.583567694137355609637747489301, −7.34849276792725376954747804927, −6.75053180079583229876213778141, −5.52897637370693726493914237096, −5.19352521014216754559126703206, −4.02174794598969722967063116783, −3.30289378211385297672103041551, −1.91758650570189710748989195870, 0, 1.91758650570189710748989195870, 3.30289378211385297672103041551, 4.02174794598969722967063116783, 5.19352521014216754559126703206, 5.52897637370693726493914237096, 6.75053180079583229876213778141, 7.34849276792725376954747804927, 8.583567694137355609637747489301, 9.788231791734121133244800726488

Graph of the $Z$-function along the critical line