L(s) = 1 | + 4.70·2-s − 3·3-s + 14.1·4-s + 5·5-s − 14.1·6-s + 28.7·8-s + 9·9-s + 23.5·10-s + 24.5·11-s − 42.3·12-s + 35.0·13-s − 15·15-s + 22.1·16-s + 18.4·17-s + 42.3·18-s + 67.4·19-s + 70.5·20-s + 115.·22-s − 145.·23-s − 86.1·24-s + 25·25-s + 164.·26-s − 27·27-s + 214.·29-s − 70.5·30-s + 88.6·31-s − 125.·32-s + ⋯ |
L(s) = 1 | + 1.66·2-s − 0.577·3-s + 1.76·4-s + 0.447·5-s − 0.959·6-s + 1.26·8-s + 0.333·9-s + 0.743·10-s + 0.674·11-s − 1.01·12-s + 0.747·13-s − 0.258·15-s + 0.345·16-s + 0.262·17-s + 0.554·18-s + 0.813·19-s + 0.788·20-s + 1.12·22-s − 1.32·23-s − 0.732·24-s + 0.200·25-s + 1.24·26-s − 0.192·27-s + 1.37·29-s − 0.429·30-s + 0.513·31-s − 0.694·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(5.486027028\) |
\(L(\frac12)\) |
\(\approx\) |
\(5.486027028\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + 3T \) |
| 5 | \( 1 - 5T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 - 4.70T + 8T^{2} \) |
| 11 | \( 1 - 24.5T + 1.33e3T^{2} \) |
| 13 | \( 1 - 35.0T + 2.19e3T^{2} \) |
| 17 | \( 1 - 18.4T + 4.91e3T^{2} \) |
| 19 | \( 1 - 67.4T + 6.85e3T^{2} \) |
| 23 | \( 1 + 145.T + 1.21e4T^{2} \) |
| 29 | \( 1 - 214.T + 2.43e4T^{2} \) |
| 31 | \( 1 - 88.6T + 2.97e4T^{2} \) |
| 37 | \( 1 - 162.T + 5.06e4T^{2} \) |
| 41 | \( 1 - 337.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 122.T + 7.95e4T^{2} \) |
| 47 | \( 1 + 354.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 676.T + 1.48e5T^{2} \) |
| 59 | \( 1 + 501.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 708.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 907.T + 3.00e5T^{2} \) |
| 71 | \( 1 - 430.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 41.3T + 3.89e5T^{2} \) |
| 79 | \( 1 - 890.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 1.05e3T + 5.71e5T^{2} \) |
| 89 | \( 1 + 1.47e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + 555.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.26243306453489764673215649701, −9.312958750931259854264478827614, −8.014715513445701045886512751649, −6.80558046091901650361741660254, −6.15139409839427904295959889246, −5.53996684522321551081043933933, −4.51515373973666636588781518725, −3.73929958869782030011687353693, −2.55989918564782867568502447585, −1.17920045757108547304782338798,
1.17920045757108547304782338798, 2.55989918564782867568502447585, 3.73929958869782030011687353693, 4.51515373973666636588781518725, 5.53996684522321551081043933933, 6.15139409839427904295959889246, 6.80558046091901650361741660254, 8.014715513445701045886512751649, 9.312958750931259854264478827614, 10.26243306453489764673215649701