Properties

Label 2-735-1.1-c3-0-42
Degree $2$
Conductor $735$
Sign $1$
Analytic cond. $43.3664$
Root an. cond. $6.58531$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.70·2-s − 3·3-s + 14.1·4-s + 5·5-s − 14.1·6-s + 28.7·8-s + 9·9-s + 23.5·10-s + 24.5·11-s − 42.3·12-s + 35.0·13-s − 15·15-s + 22.1·16-s + 18.4·17-s + 42.3·18-s + 67.4·19-s + 70.5·20-s + 115.·22-s − 145.·23-s − 86.1·24-s + 25·25-s + 164.·26-s − 27·27-s + 214.·29-s − 70.5·30-s + 88.6·31-s − 125.·32-s + ⋯
L(s)  = 1  + 1.66·2-s − 0.577·3-s + 1.76·4-s + 0.447·5-s − 0.959·6-s + 1.26·8-s + 0.333·9-s + 0.743·10-s + 0.674·11-s − 1.01·12-s + 0.747·13-s − 0.258·15-s + 0.345·16-s + 0.262·17-s + 0.554·18-s + 0.813·19-s + 0.788·20-s + 1.12·22-s − 1.32·23-s − 0.732·24-s + 0.200·25-s + 1.24·26-s − 0.192·27-s + 1.37·29-s − 0.429·30-s + 0.513·31-s − 0.694·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(735\)    =    \(3 \cdot 5 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(43.3664\)
Root analytic conductor: \(6.58531\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 735,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(5.486027028\)
\(L(\frac12)\) \(\approx\) \(5.486027028\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
5 \( 1 - 5T \)
7 \( 1 \)
good2 \( 1 - 4.70T + 8T^{2} \)
11 \( 1 - 24.5T + 1.33e3T^{2} \)
13 \( 1 - 35.0T + 2.19e3T^{2} \)
17 \( 1 - 18.4T + 4.91e3T^{2} \)
19 \( 1 - 67.4T + 6.85e3T^{2} \)
23 \( 1 + 145.T + 1.21e4T^{2} \)
29 \( 1 - 214.T + 2.43e4T^{2} \)
31 \( 1 - 88.6T + 2.97e4T^{2} \)
37 \( 1 - 162.T + 5.06e4T^{2} \)
41 \( 1 - 337.T + 6.89e4T^{2} \)
43 \( 1 - 122.T + 7.95e4T^{2} \)
47 \( 1 + 354.T + 1.03e5T^{2} \)
53 \( 1 - 676.T + 1.48e5T^{2} \)
59 \( 1 + 501.T + 2.05e5T^{2} \)
61 \( 1 - 708.T + 2.26e5T^{2} \)
67 \( 1 + 907.T + 3.00e5T^{2} \)
71 \( 1 - 430.T + 3.57e5T^{2} \)
73 \( 1 + 41.3T + 3.89e5T^{2} \)
79 \( 1 - 890.T + 4.93e5T^{2} \)
83 \( 1 - 1.05e3T + 5.71e5T^{2} \)
89 \( 1 + 1.47e3T + 7.04e5T^{2} \)
97 \( 1 + 555.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.26243306453489764673215649701, −9.312958750931259854264478827614, −8.014715513445701045886512751649, −6.80558046091901650361741660254, −6.15139409839427904295959889246, −5.53996684522321551081043933933, −4.51515373973666636588781518725, −3.73929958869782030011687353693, −2.55989918564782867568502447585, −1.17920045757108547304782338798, 1.17920045757108547304782338798, 2.55989918564782867568502447585, 3.73929958869782030011687353693, 4.51515373973666636588781518725, 5.53996684522321551081043933933, 6.15139409839427904295959889246, 6.80558046091901650361741660254, 8.014715513445701045886512751649, 9.312958750931259854264478827614, 10.26243306453489764673215649701

Graph of the $Z$-function along the critical line