Properties

Label 2-735-1.1-c1-0-18
Degree $2$
Conductor $735$
Sign $1$
Analytic cond. $5.86900$
Root an. cond. $2.42260$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.27·2-s + 3-s + 3.15·4-s − 5-s + 2.27·6-s + 2.63·8-s + 9-s − 2.27·10-s + 5.05·11-s + 3.15·12-s + 0.224·13-s − 15-s − 0.338·16-s − 3.59·17-s + 2.27·18-s + 4.78·19-s − 3.15·20-s + 11.4·22-s + 7.01·23-s + 2.63·24-s + 25-s + 0.510·26-s + 27-s − 8.74·29-s − 2.27·30-s − 8.78·31-s − 6.03·32-s + ⋯
L(s)  = 1  + 1.60·2-s + 0.577·3-s + 1.57·4-s − 0.447·5-s + 0.927·6-s + 0.930·8-s + 0.333·9-s − 0.718·10-s + 1.52·11-s + 0.911·12-s + 0.0623·13-s − 0.258·15-s − 0.0847·16-s − 0.872·17-s + 0.535·18-s + 1.09·19-s − 0.706·20-s + 2.44·22-s + 1.46·23-s + 0.537·24-s + 0.200·25-s + 0.100·26-s + 0.192·27-s − 1.62·29-s − 0.414·30-s − 1.57·31-s − 1.06·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(735\)    =    \(3 \cdot 5 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(5.86900\)
Root analytic conductor: \(2.42260\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 735,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.230445553\)
\(L(\frac12)\) \(\approx\) \(4.230445553\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 + T \)
7 \( 1 \)
good2 \( 1 - 2.27T + 2T^{2} \)
11 \( 1 - 5.05T + 11T^{2} \)
13 \( 1 - 0.224T + 13T^{2} \)
17 \( 1 + 3.59T + 17T^{2} \)
19 \( 1 - 4.78T + 19T^{2} \)
23 \( 1 - 7.01T + 23T^{2} \)
29 \( 1 + 8.74T + 29T^{2} \)
31 \( 1 + 8.78T + 31T^{2} \)
37 \( 1 + 5.91T + 37T^{2} \)
41 \( 1 + 8.42T + 41T^{2} \)
43 \( 1 + 4.31T + 43T^{2} \)
47 \( 1 - 10.4T + 47T^{2} \)
53 \( 1 - 0.361T + 53T^{2} \)
59 \( 1 - 6.25T + 59T^{2} \)
61 \( 1 + 6.58T + 61T^{2} \)
67 \( 1 + 8.36T + 67T^{2} \)
71 \( 1 + 12.9T + 71T^{2} \)
73 \( 1 - 4.86T + 73T^{2} \)
79 \( 1 - 2.88T + 79T^{2} \)
83 \( 1 - 12.8T + 83T^{2} \)
89 \( 1 + 4.82T + 89T^{2} \)
97 \( 1 + 2.48T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.78463197841359729062494154341, −9.254604605696625200299545463010, −8.869501231962254204296023652445, −7.27789265118391045525118253625, −6.91068251843255676469212814361, −5.71550388704686528972797044888, −4.76375665097395989716430818760, −3.77730702638999134541527639441, −3.27802794638541044011758408203, −1.79182185636844248975787007044, 1.79182185636844248975787007044, 3.27802794638541044011758408203, 3.77730702638999134541527639441, 4.76375665097395989716430818760, 5.71550388704686528972797044888, 6.91068251843255676469212814361, 7.27789265118391045525118253625, 8.869501231962254204296023652445, 9.254604605696625200299545463010, 10.78463197841359729062494154341

Graph of the $Z$-function along the critical line