Properties

Label 2-73-73.16-c1-0-3
Degree $2$
Conductor $73$
Sign $0.994 - 0.107i$
Analytic cond. $0.582907$
Root an. cond. $0.763484$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.157 + 0.895i)2-s + (0.719 − 1.24i)3-s + (1.10 + 0.401i)4-s + (−0.683 − 3.87i)5-s + (1.00 + 0.841i)6-s + (−2.04 + 3.54i)7-s + (−1.44 + 2.49i)8-s + (0.463 + 0.803i)9-s + 3.58·10-s + (0.168 + 0.954i)11-s + (1.29 − 1.08i)12-s + (−3.23 − 2.71i)13-s + (−2.85 − 2.39i)14-s + (−5.32 − 1.93i)15-s + (−0.213 − 0.179i)16-s + (0.420 + 0.727i)17-s + ⋯
L(s)  = 1  + (−0.111 + 0.633i)2-s + (0.415 − 0.719i)3-s + (0.551 + 0.200i)4-s + (−0.305 − 1.73i)5-s + (0.409 + 0.343i)6-s + (−0.773 + 1.33i)7-s + (−0.510 + 0.883i)8-s + (0.154 + 0.267i)9-s + 1.13·10-s + (0.0507 + 0.287i)11-s + (0.373 − 0.313i)12-s + (−0.897 − 0.753i)13-s + (−0.761 − 0.639i)14-s + (−1.37 − 0.500i)15-s + (−0.0533 − 0.0448i)16-s + (0.101 + 0.176i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 73 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.994 - 0.107i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 73 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.994 - 0.107i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(73\)
Sign: $0.994 - 0.107i$
Analytic conductor: \(0.582907\)
Root analytic conductor: \(0.763484\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{73} (16, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 73,\ (\ :1/2),\ 0.994 - 0.107i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.999913 + 0.0537810i\)
\(L(\frac12)\) \(\approx\) \(0.999913 + 0.0537810i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad73 \( 1 + (-4.68 + 7.14i)T \)
good2 \( 1 + (0.157 - 0.895i)T + (-1.87 - 0.684i)T^{2} \)
3 \( 1 + (-0.719 + 1.24i)T + (-1.5 - 2.59i)T^{2} \)
5 \( 1 + (0.683 + 3.87i)T + (-4.69 + 1.71i)T^{2} \)
7 \( 1 + (2.04 - 3.54i)T + (-3.5 - 6.06i)T^{2} \)
11 \( 1 + (-0.168 - 0.954i)T + (-10.3 + 3.76i)T^{2} \)
13 \( 1 + (3.23 + 2.71i)T + (2.25 + 12.8i)T^{2} \)
17 \( 1 + (-0.420 - 0.727i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (0.367 - 2.08i)T + (-17.8 - 6.49i)T^{2} \)
23 \( 1 + (0.820 + 4.65i)T + (-21.6 + 7.86i)T^{2} \)
29 \( 1 + (-1.27 + 7.25i)T + (-27.2 - 9.91i)T^{2} \)
31 \( 1 + (-5.87 + 2.14i)T + (23.7 - 19.9i)T^{2} \)
37 \( 1 + (-0.599 - 3.39i)T + (-34.7 + 12.6i)T^{2} \)
41 \( 1 + (6.12 - 5.13i)T + (7.11 - 40.3i)T^{2} \)
43 \( 1 + (-0.526 + 0.911i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (0.700 - 0.587i)T + (8.16 - 46.2i)T^{2} \)
53 \( 1 + (-0.193 + 1.09i)T + (-49.8 - 18.1i)T^{2} \)
59 \( 1 + (0.904 + 0.758i)T + (10.2 + 58.1i)T^{2} \)
61 \( 1 + (-7.16 + 6.01i)T + (10.5 - 60.0i)T^{2} \)
67 \( 1 + (0.736 + 0.617i)T + (11.6 + 65.9i)T^{2} \)
71 \( 1 + (0.338 - 1.91i)T + (-66.7 - 24.2i)T^{2} \)
79 \( 1 + (-9.51 - 7.98i)T + (13.7 + 77.7i)T^{2} \)
83 \( 1 - 5.84T + 83T^{2} \)
89 \( 1 + (2.73 + 2.29i)T + (15.4 + 87.6i)T^{2} \)
97 \( 1 + (2.87 + 4.97i)T + (-48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.98914156735687728209520193605, −13.27838801490401379199062477488, −12.35050061236537396318296768961, −12.06956781356592117090442305534, −9.741118233335446470270308026866, −8.388860822718222438947646113312, −7.974719935314392229470643340443, −6.33978349499128497560187421705, −5.05599998005466270208110926207, −2.39808806077895397509096866568, 2.97862477306642642444763176417, 3.82806513713963177383688377061, 6.72928841063970649160283582592, 7.13264432923833181990868858425, 9.566281098432179408497465801531, 10.25868874472550490626800725157, 10.93923034795930826975572022549, 12.07072025547620358127659914291, 13.78134843924277496526036786910, 14.64801528692617994489663919430

Graph of the $Z$-function along the critical line