| L(s) = 1 | + (0.866 + 0.5i)2-s + (0.965 − 1.67i)3-s + (0.499 + 0.866i)4-s + 0.517i·5-s + (1.67 − 0.965i)6-s + (−0.866 + 0.5i)7-s + 0.999i·8-s + (−1.36 − 2.36i)9-s + (−0.258 + 0.448i)10-s + 1.93·12-s + (0.258 − 0.965i)13-s − 0.999·14-s + (0.866 + 0.499i)15-s + (−0.5 + 0.866i)16-s − 2.73i·18-s + (−1.22 + 0.707i)19-s + ⋯ |
| L(s) = 1 | + (0.866 + 0.5i)2-s + (0.965 − 1.67i)3-s + (0.499 + 0.866i)4-s + 0.517i·5-s + (1.67 − 0.965i)6-s + (−0.866 + 0.5i)7-s + 0.999i·8-s + (−1.36 − 2.36i)9-s + (−0.258 + 0.448i)10-s + 1.93·12-s + (0.258 − 0.965i)13-s − 0.999·14-s + (0.866 + 0.499i)15-s + (−0.5 + 0.866i)16-s − 2.73i·18-s + (−1.22 + 0.707i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.969 + 0.246i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.969 + 0.246i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.803763138\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.803763138\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 7 | \( 1 + (0.866 - 0.5i)T \) |
| 13 | \( 1 + (-0.258 + 0.965i)T \) |
| good | 3 | \( 1 + (-0.965 + 1.67i)T + (-0.5 - 0.866i)T^{2} \) |
| 5 | \( 1 - 0.517iT - T^{2} \) |
| 11 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (1.22 - 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (-0.448 + 0.258i)T + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.965 + 1.67i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 - 1.41iT - T^{2} \) |
| 89 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.78443318983488279097313950765, −9.389253093657897636497418277815, −8.366927810097646315468160348311, −7.896306323410220584185004130274, −6.90188359749276391378708887612, −6.36495098158021418534696989743, −5.63868495808604801257022719206, −3.65615974826060447246056233463, −2.99181115328632732216471201877, −2.05324916624607817725799714606,
2.32584146852629699217200981248, 3.31330026994784052235563321164, 4.32701365998439069473180826403, 4.55232188615521658512712138812, 5.88140138068269180630242901829, 6.98496457691072270427230863832, 8.530939143468166282346698472940, 9.127322892966332610858729419020, 9.902627592855212708622152153986, 10.56863233287718506204765561101