| L(s) = 1 | + (−0.866 − 0.5i)2-s + (−0.258 + 0.448i)3-s + (0.499 + 0.866i)4-s + 1.93i·5-s + (0.448 − 0.258i)6-s + (0.866 − 0.5i)7-s − 0.999i·8-s + (0.366 + 0.633i)9-s + (0.965 − 1.67i)10-s − 0.517·12-s + (−0.965 − 0.258i)13-s − 0.999·14-s + (−0.866 − 0.499i)15-s + (−0.5 + 0.866i)16-s − 0.732i·18-s + (1.22 − 0.707i)19-s + ⋯ |
| L(s) = 1 | + (−0.866 − 0.5i)2-s + (−0.258 + 0.448i)3-s + (0.499 + 0.866i)4-s + 1.93i·5-s + (0.448 − 0.258i)6-s + (0.866 − 0.5i)7-s − 0.999i·8-s + (0.366 + 0.633i)9-s + (0.965 − 1.67i)10-s − 0.517·12-s + (−0.965 − 0.258i)13-s − 0.999·14-s + (−0.866 − 0.499i)15-s + (−0.5 + 0.866i)16-s − 0.732i·18-s + (1.22 − 0.707i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.246 - 0.969i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.246 - 0.969i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6316054555\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.6316054555\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.866 + 0.5i)T \) |
| 7 | \( 1 + (-0.866 + 0.5i)T \) |
| 13 | \( 1 + (0.965 + 0.258i)T \) |
| good | 3 | \( 1 + (0.258 - 0.448i)T + (-0.5 - 0.866i)T^{2} \) |
| 5 | \( 1 - 1.93iT - T^{2} \) |
| 11 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (-1.22 + 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (-1.67 + 0.965i)T + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.258 - 0.448i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + 1.41iT - T^{2} \) |
| 89 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.58543308202511179078883170484, −10.17457436180487690047781807134, −9.504661962708371551873735452683, −7.937521972672067570120090972589, −7.43677946672101651243688122828, −6.86738577435185021143988158593, −5.40156154980029910705527212029, −4.08322555415952045209187290288, −3.02634872185218437901943661811, −2.00846403210482872224541483087,
0.999335107853771514727881998816, 1.97902552396715986832103889776, 4.37701598004499685478259843175, 5.25453226437982872632200836040, 5.88830971471864624067531878422, 7.18566618017711682929437395111, 7.991689717032934427660304361021, 8.631628855081032411188543433049, 9.426829181694240812676430130186, 9.990567912522789539437629823017