L(s) = 1 | + (−1.10 − 0.883i)2-s + (0.460 + 0.266i)3-s + (0.439 + 1.95i)4-s − 0.503·5-s + (−0.273 − 0.700i)6-s + (−0.866 + 0.5i)7-s + (1.23 − 2.54i)8-s + (−1.35 − 2.35i)9-s + (0.555 + 0.444i)10-s + (−0.0273 + 0.0472i)11-s + (−0.316 + 1.01i)12-s + (3.43 − 1.10i)13-s + (1.39 + 0.212i)14-s + (−0.231 − 0.133i)15-s + (−3.61 + 1.71i)16-s + (1.27 + 2.21i)17-s + ⋯ |
L(s) = 1 | + (−0.780 − 0.624i)2-s + (0.266 + 0.153i)3-s + (0.219 + 0.975i)4-s − 0.225·5-s + (−0.111 − 0.286i)6-s + (−0.327 + 0.188i)7-s + (0.437 − 0.899i)8-s + (−0.452 − 0.784i)9-s + (0.175 + 0.140i)10-s + (−0.00823 + 0.0142i)11-s + (−0.0914 + 0.293i)12-s + (0.952 − 0.305i)13-s + (0.373 + 0.0568i)14-s + (−0.0598 − 0.0345i)15-s + (−0.903 + 0.428i)16-s + (0.309 + 0.536i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.129 + 0.991i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.129 + 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.576063 - 0.656321i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.576063 - 0.656321i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.10 + 0.883i)T \) |
| 7 | \( 1 + (0.866 - 0.5i)T \) |
| 13 | \( 1 + (-3.43 + 1.10i)T \) |
good | 3 | \( 1 + (-0.460 - 0.266i)T + (1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + 0.503T + 5T^{2} \) |
| 11 | \( 1 + (0.0273 - 0.0472i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.27 - 2.21i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.62 + 4.54i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.685 + 1.18i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-7.07 - 4.08i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 8.99iT - 31T^{2} \) |
| 37 | \( 1 + (-4.90 + 8.49i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (2.92 + 1.68i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.84 + 2.79i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 6.59iT - 47T^{2} \) |
| 53 | \( 1 + 11.7iT - 53T^{2} \) |
| 59 | \( 1 + (0.303 + 0.525i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-8.79 + 5.07i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (0.0600 - 0.104i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-3.29 + 1.90i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 7.23iT - 73T^{2} \) |
| 79 | \( 1 + 11.5T + 79T^{2} \) |
| 83 | \( 1 + 8.30T + 83T^{2} \) |
| 89 | \( 1 + (-0.726 - 0.419i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (6.37 - 3.67i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.08154258711273793060447564901, −9.268576955094180881798485861934, −8.621477475785884445193440845690, −7.922716050154404952526753037582, −6.74695826875443886939867821915, −5.91369364534143714689338301324, −4.20130902883395604033293177792, −3.41695900620524374705417242139, −2.35940721382442886311739220265, −0.60865239358444646106931277484,
1.38529069229249936173327593718, 2.82961213432034409346798388255, 4.31790440082089646335857924943, 5.53588112679414980003846725779, 6.36094926377583072546492053119, 7.28341230173790499063225228150, 8.239814606990164329113198249124, 8.561730704119471738041837212617, 9.761936204182185188146405276467, 10.39553424027774067090435258090