L(s) = 1 | + (0.526 − 1.31i)2-s + (−1.82 + 1.05i)3-s + (−1.44 − 1.38i)4-s + 1.99·5-s + (0.421 + 2.94i)6-s + (0.866 + 0.5i)7-s + (−2.57 + 1.16i)8-s + (0.714 − 1.23i)9-s + (1.04 − 2.61i)10-s + (1.16 + 2.01i)11-s + (4.08 + 0.998i)12-s + (−3.55 + 0.599i)13-s + (1.11 − 0.873i)14-s + (−3.62 + 2.09i)15-s + (0.177 + 3.99i)16-s + (0.978 − 1.69i)17-s + ⋯ |
L(s) = 1 | + (0.372 − 0.928i)2-s + (−1.05 + 0.607i)3-s + (−0.722 − 0.691i)4-s + 0.890·5-s + (0.171 + 1.20i)6-s + (0.327 + 0.188i)7-s + (−0.910 + 0.413i)8-s + (0.238 − 0.412i)9-s + (0.331 − 0.826i)10-s + (0.351 + 0.608i)11-s + (1.18 + 0.288i)12-s + (−0.986 + 0.166i)13-s + (0.297 − 0.233i)14-s + (−0.937 + 0.541i)15-s + (0.0442 + 0.999i)16-s + (0.237 − 0.411i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.836 - 0.548i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.836 - 0.548i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.08407 + 0.323644i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.08407 + 0.323644i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.526 + 1.31i)T \) |
| 7 | \( 1 + (-0.866 - 0.5i)T \) |
| 13 | \( 1 + (3.55 - 0.599i)T \) |
good | 3 | \( 1 + (1.82 - 1.05i)T + (1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 - 1.99T + 5T^{2} \) |
| 11 | \( 1 + (-1.16 - 2.01i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-0.978 + 1.69i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (3.12 - 5.40i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.75 - 4.77i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-6.43 + 3.71i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 4.25iT - 31T^{2} \) |
| 37 | \( 1 + (-5.03 - 8.71i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (4.36 - 2.51i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-8.68 - 5.01i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 7.89iT - 47T^{2} \) |
| 53 | \( 1 + 11.7iT - 53T^{2} \) |
| 59 | \( 1 + (1.32 - 2.29i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-9.08 - 5.24i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.222 + 0.385i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (4.82 + 2.78i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 7.74iT - 73T^{2} \) |
| 79 | \( 1 + 15.3T + 79T^{2} \) |
| 83 | \( 1 + 0.107T + 83T^{2} \) |
| 89 | \( 1 + (-5.46 + 3.15i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (0.896 + 0.517i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.32660033914202987584781040819, −9.975534878916930399922898579414, −9.331476763215344991807939192063, −8.036604622561022185730255315677, −6.49718237764508799628677540358, −5.71485478073911302036781774166, −4.94403984312485647982656998006, −4.28734548890010981453568435719, −2.71031761802793769840549414108, −1.50582194257332289191586425645,
0.61888464075597099039019800497, 2.55473523924125258287378537376, 4.25256979229593105563538563748, 5.26761426829822087960616011285, 5.89033263334008630061845814533, 6.69376817965036988235727865571, 7.28628140356631223548308551872, 8.512703812845808305093785910901, 9.255812816074319806997196316286, 10.39674488194613260662592196617