L(s) = 1 | + (1.30 + 0.555i)2-s + (−0.563 + 0.325i)3-s + (1.38 + 1.44i)4-s − 2.56·5-s + (−0.913 + 0.109i)6-s + (0.866 + 0.5i)7-s + (0.993 + 2.64i)8-s + (−1.28 + 2.23i)9-s + (−3.32 − 1.42i)10-s + (−2.93 − 5.08i)11-s + (−1.24 − 0.364i)12-s + (−2.06 + 2.95i)13-s + (0.848 + 1.13i)14-s + (1.44 − 0.833i)15-s + (−0.179 + 3.99i)16-s + (−0.197 + 0.341i)17-s + ⋯ |
L(s) = 1 | + (0.919 + 0.393i)2-s + (−0.325 + 0.187i)3-s + (0.691 + 0.722i)4-s − 1.14·5-s + (−0.373 + 0.0448i)6-s + (0.327 + 0.188i)7-s + (0.351 + 0.936i)8-s + (−0.429 + 0.743i)9-s + (−1.05 − 0.450i)10-s + (−0.884 − 1.53i)11-s + (−0.360 − 0.105i)12-s + (−0.573 + 0.819i)13-s + (0.226 + 0.302i)14-s + (0.372 − 0.215i)15-s + (−0.0448 + 0.998i)16-s + (−0.0478 + 0.0828i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.965 - 0.261i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.965 - 0.261i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.150396 + 1.12980i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.150396 + 1.12980i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.30 - 0.555i)T \) |
| 7 | \( 1 + (-0.866 - 0.5i)T \) |
| 13 | \( 1 + (2.06 - 2.95i)T \) |
good | 3 | \( 1 + (0.563 - 0.325i)T + (1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + 2.56T + 5T^{2} \) |
| 11 | \( 1 + (2.93 + 5.08i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (0.197 - 0.341i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (4.11 - 7.12i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.24 - 3.88i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.92 + 2.26i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 4.34iT - 31T^{2} \) |
| 37 | \( 1 + (2.90 + 5.03i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (7.40 - 4.27i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-8.49 - 4.90i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 7.44iT - 47T^{2} \) |
| 53 | \( 1 + 0.739iT - 53T^{2} \) |
| 59 | \( 1 + (6.84 - 11.8i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.02 - 1.74i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.87 - 10.1i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-10.3 - 6.00i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 4.41iT - 73T^{2} \) |
| 79 | \( 1 - 2.10T + 79T^{2} \) |
| 83 | \( 1 - 3.25T + 83T^{2} \) |
| 89 | \( 1 + (-7.13 + 4.11i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (1.67 + 0.965i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.16141769675854430286260361056, −10.30717495399846472117003351030, −8.549123546384459924493448446063, −8.105804979685397008519399735223, −7.39055553928613589296624893607, −6.07783254237821151380748039670, −5.42791826560996444039228268668, −4.42622725519113707574178418375, −3.58081411919286585957517529275, −2.36140225890884409019266287003,
0.42363717428719944652164343372, 2.37643441512388277208522841939, 3.41464565351722979214410200386, 4.76701306304250377073061340001, 4.94840498016245527578534427027, 6.57370210715904759552317938919, 7.13251860755257281615589467791, 8.048659902217698467798156264677, 9.268748784715061500706469096147, 10.49657478872941868653836822522