Properties

Label 2-728-1.1-c1-0-8
Degree $2$
Conductor $728$
Sign $1$
Analytic cond. $5.81310$
Root an. cond. $2.41103$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.27·3-s + 2.87·5-s + 7-s − 1.38·9-s + 1.27·11-s + 13-s + 3.65·15-s + 3.10·17-s − 0.870·19-s + 1.27·21-s − 0.402·23-s + 3.23·25-s − 5.57·27-s + 6.52·29-s − 5.79·31-s + 1.61·33-s + 2.87·35-s + 0.727·37-s + 1.27·39-s − 6.12·41-s − 0.237·43-s − 3.96·45-s − 5.79·47-s + 49-s + 3.95·51-s − 2.52·53-s + 3.65·55-s + ⋯
L(s)  = 1  + 0.734·3-s + 1.28·5-s + 0.377·7-s − 0.460·9-s + 0.383·11-s + 0.277·13-s + 0.943·15-s + 0.753·17-s − 0.199·19-s + 0.277·21-s − 0.0839·23-s + 0.647·25-s − 1.07·27-s + 1.21·29-s − 1.04·31-s + 0.281·33-s + 0.485·35-s + 0.119·37-s + 0.203·39-s − 0.955·41-s − 0.0361·43-s − 0.590·45-s − 0.845·47-s + 0.142·49-s + 0.553·51-s − 0.346·53-s + 0.492·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(728\)    =    \(2^{3} \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(5.81310\)
Root analytic conductor: \(2.41103\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 728,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.430117185\)
\(L(\frac12)\) \(\approx\) \(2.430117185\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - T \)
13 \( 1 - T \)
good3 \( 1 - 1.27T + 3T^{2} \)
5 \( 1 - 2.87T + 5T^{2} \)
11 \( 1 - 1.27T + 11T^{2} \)
17 \( 1 - 3.10T + 17T^{2} \)
19 \( 1 + 0.870T + 19T^{2} \)
23 \( 1 + 0.402T + 23T^{2} \)
29 \( 1 - 6.52T + 29T^{2} \)
31 \( 1 + 5.79T + 31T^{2} \)
37 \( 1 - 0.727T + 37T^{2} \)
41 \( 1 + 6.12T + 41T^{2} \)
43 \( 1 + 0.237T + 43T^{2} \)
47 \( 1 + 5.79T + 47T^{2} \)
53 \( 1 + 2.52T + 53T^{2} \)
59 \( 1 - 3.19T + 59T^{2} \)
61 \( 1 - 11.5T + 61T^{2} \)
67 \( 1 - 4.92T + 67T^{2} \)
71 \( 1 + 1.43T + 71T^{2} \)
73 \( 1 - 3.51T + 73T^{2} \)
79 \( 1 + 12.6T + 79T^{2} \)
83 \( 1 + 6.32T + 83T^{2} \)
89 \( 1 - 16.7T + 89T^{2} \)
97 \( 1 + 6.34T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.16202754756115469374544348173, −9.533017541097882487239802969546, −8.695492418615804109979979885270, −8.056159228484255979045690684334, −6.83130072223761712259740650855, −5.90067290745228996105072215525, −5.12358655378588464258905609593, −3.69790577136341211603372880299, −2.59505455189682805055359257629, −1.55452007153238320198007779500, 1.55452007153238320198007779500, 2.59505455189682805055359257629, 3.69790577136341211603372880299, 5.12358655378588464258905609593, 5.90067290745228996105072215525, 6.83130072223761712259740650855, 8.056159228484255979045690684334, 8.695492418615804109979979885270, 9.533017541097882487239802969546, 10.16202754756115469374544348173

Graph of the $Z$-function along the critical line