Properties

Label 2-725-1.1-c1-0-33
Degree $2$
Conductor $725$
Sign $1$
Analytic cond. $5.78915$
Root an. cond. $2.40606$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.77·2-s + 0.269·3-s + 5.67·4-s + 0.747·6-s + 1.86·7-s + 10.1·8-s − 2.92·9-s − 3.25·11-s + 1.53·12-s − 3.40·13-s + 5.17·14-s + 16.8·16-s + 2.40·17-s − 8.10·18-s − 0.674·19-s + 0.504·21-s − 9.01·22-s − 7.41·23-s + 2.74·24-s − 9.42·26-s − 1.59·27-s + 10.6·28-s − 29-s + 5.25·31-s + 26.3·32-s − 0.877·33-s + 6.67·34-s + ⋯
L(s)  = 1  + 1.95·2-s + 0.155·3-s + 2.83·4-s + 0.305·6-s + 0.706·7-s + 3.59·8-s − 0.975·9-s − 0.980·11-s + 0.442·12-s − 0.943·13-s + 1.38·14-s + 4.21·16-s + 0.584·17-s − 1.91·18-s − 0.154·19-s + 0.110·21-s − 1.92·22-s − 1.54·23-s + 0.560·24-s − 1.84·26-s − 0.307·27-s + 2.00·28-s − 0.185·29-s + 0.943·31-s + 4.65·32-s − 0.152·33-s + 1.14·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 725 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 725 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(725\)    =    \(5^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(5.78915\)
Root analytic conductor: \(2.40606\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 725,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.013659498\)
\(L(\frac12)\) \(\approx\) \(5.013659498\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
29 \( 1 + T \)
good2 \( 1 - 2.77T + 2T^{2} \)
3 \( 1 - 0.269T + 3T^{2} \)
7 \( 1 - 1.86T + 7T^{2} \)
11 \( 1 + 3.25T + 11T^{2} \)
13 \( 1 + 3.40T + 13T^{2} \)
17 \( 1 - 2.40T + 17T^{2} \)
19 \( 1 + 0.674T + 19T^{2} \)
23 \( 1 + 7.41T + 23T^{2} \)
31 \( 1 - 5.25T + 31T^{2} \)
37 \( 1 + 1.86T + 37T^{2} \)
41 \( 1 + 41T^{2} \)
43 \( 1 - 3.46T + 43T^{2} \)
47 \( 1 + 4.00T + 47T^{2} \)
53 \( 1 + 0.877T + 53T^{2} \)
59 \( 1 - 10T + 59T^{2} \)
61 \( 1 - 11.8T + 61T^{2} \)
67 \( 1 + 7.95T + 67T^{2} \)
71 \( 1 - 2T + 71T^{2} \)
73 \( 1 - 0.607T + 73T^{2} \)
79 \( 1 - 8.60T + 79T^{2} \)
83 \( 1 - 2.40T + 83T^{2} \)
89 \( 1 + 8.50T + 89T^{2} \)
97 \( 1 - 13.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.72723338715675530759290355344, −9.963555376483953160872413417673, −8.149568358986130733580655343282, −7.71154628272541474429051137057, −6.54226292755204087763584139394, −5.54934590252731235377886439729, −5.06518631589008421919996968373, −4.02400160088979750384325405108, −2.87549551626224488302870296613, −2.10599877537359630847455804246, 2.10599877537359630847455804246, 2.87549551626224488302870296613, 4.02400160088979750384325405108, 5.06518631589008421919996968373, 5.54934590252731235377886439729, 6.54226292755204087763584139394, 7.71154628272541474429051137057, 8.149568358986130733580655343282, 9.963555376483953160872413417673, 10.72723338715675530759290355344

Graph of the $Z$-function along the critical line