Properties

Label 2-725-1.1-c1-0-27
Degree $2$
Conductor $725$
Sign $-1$
Analytic cond. $5.78915$
Root an. cond. $2.40606$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.06·2-s − 3.37·3-s − 0.862·4-s − 3.60·6-s + 2.91·7-s − 3.05·8-s + 8.41·9-s + 2.52·11-s + 2.91·12-s + 0.109·13-s + 3.10·14-s − 1.52·16-s − 6.38·17-s + 8.97·18-s − 6.56·19-s − 9.85·21-s + 2.69·22-s − 3.08·23-s + 10.3·24-s + 0.116·26-s − 18.3·27-s − 2.51·28-s + 29-s + 1.18·31-s + 4.47·32-s − 8.52·33-s − 6.80·34-s + ⋯
L(s)  = 1  + 0.754·2-s − 1.95·3-s − 0.431·4-s − 1.47·6-s + 1.10·7-s − 1.07·8-s + 2.80·9-s + 0.760·11-s + 0.841·12-s + 0.0302·13-s + 0.830·14-s − 0.382·16-s − 1.54·17-s + 2.11·18-s − 1.50·19-s − 2.14·21-s + 0.573·22-s − 0.643·23-s + 2.10·24-s + 0.0228·26-s − 3.52·27-s − 0.475·28-s + 0.185·29-s + 0.213·31-s + 0.791·32-s − 1.48·33-s − 1.16·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 725 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 725 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(725\)    =    \(5^{2} \cdot 29\)
Sign: $-1$
Analytic conductor: \(5.78915\)
Root analytic conductor: \(2.40606\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 725,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
29 \( 1 - T \)
good2 \( 1 - 1.06T + 2T^{2} \)
3 \( 1 + 3.37T + 3T^{2} \)
7 \( 1 - 2.91T + 7T^{2} \)
11 \( 1 - 2.52T + 11T^{2} \)
13 \( 1 - 0.109T + 13T^{2} \)
17 \( 1 + 6.38T + 17T^{2} \)
19 \( 1 + 6.56T + 19T^{2} \)
23 \( 1 + 3.08T + 23T^{2} \)
31 \( 1 - 1.18T + 31T^{2} \)
37 \( 1 + 4.65T + 37T^{2} \)
41 \( 1 - 2.26T + 41T^{2} \)
43 \( 1 + 10.1T + 43T^{2} \)
47 \( 1 + 4.78T + 47T^{2} \)
53 \( 1 - 10.3T + 53T^{2} \)
59 \( 1 + 7.38T + 59T^{2} \)
61 \( 1 + 10.2T + 61T^{2} \)
67 \( 1 + 4.55T + 67T^{2} \)
71 \( 1 + 1.42T + 71T^{2} \)
73 \( 1 - 3.96T + 73T^{2} \)
79 \( 1 + 1.47T + 79T^{2} \)
83 \( 1 - 2.72T + 83T^{2} \)
89 \( 1 + 0.228T + 89T^{2} \)
97 \( 1 - 8.49T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.37471786151840045691363249576, −9.210784312348211499329292040172, −8.226960023402415199990449464960, −6.75993562858045550226437068520, −6.28506110156148217916571279283, −5.31242711108693296454792329078, −4.52635305427063206545387281708, −4.12988184856331408304687946418, −1.72753580595219942442770593971, 0, 1.72753580595219942442770593971, 4.12988184856331408304687946418, 4.52635305427063206545387281708, 5.31242711108693296454792329078, 6.28506110156148217916571279283, 6.75993562858045550226437068520, 8.226960023402415199990449464960, 9.210784312348211499329292040172, 10.37471786151840045691363249576

Graph of the $Z$-function along the critical line