L(s) = 1 | + (−0.5 + 0.866i)2-s + (1.61 − 2.80i)3-s + (−0.499 − 0.866i)4-s + (0.690 − 1.19i)5-s + (1.61 + 2.80i)6-s + 1.23·7-s + 0.999·8-s + (−3.73 − 6.47i)9-s + (0.690 + 1.19i)10-s + 1.23·11-s − 3.23·12-s + (1.80 + 3.13i)13-s + (−0.618 + 1.07i)14-s + (−2.23 − 3.87i)15-s + (−0.5 + 0.866i)16-s + (2.80 − 4.86i)17-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (0.934 − 1.61i)3-s + (−0.249 − 0.433i)4-s + (0.309 − 0.535i)5-s + (0.660 + 1.14i)6-s + 0.467·7-s + 0.353·8-s + (−1.24 − 2.15i)9-s + (0.218 + 0.378i)10-s + 0.372·11-s − 0.934·12-s + (0.501 + 0.869i)13-s + (−0.165 + 0.286i)14-s + (−0.577 − 1.00i)15-s + (−0.125 + 0.216i)16-s + (0.681 − 1.18i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 722 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0977 + 0.995i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 722 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0977 + 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.37713 - 1.24851i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.37713 - 1.24851i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 19 | \( 1 \) |
good | 3 | \( 1 + (-1.61 + 2.80i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (-0.690 + 1.19i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 - 1.23T + 7T^{2} \) |
| 11 | \( 1 - 1.23T + 11T^{2} \) |
| 13 | \( 1 + (-1.80 - 3.13i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-2.80 + 4.86i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (0.381 + 0.661i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.04 - 1.81i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 3.23T + 31T^{2} \) |
| 37 | \( 1 + 10.6T + 37T^{2} \) |
| 41 | \( 1 + (2.92 - 5.06i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.38 + 4.12i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-2.23 - 3.87i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-2.54 - 4.40i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-4.23 + 7.33i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (1.80 + 3.13i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.854 + 1.47i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (7.47 - 12.9i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-1.69 + 2.92i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (3.61 - 6.26i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 8.47T + 83T^{2} \) |
| 89 | \( 1 + (-1.07 - 1.85i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-3.19 + 5.52i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.722768884471553237262789586814, −8.892652286406122515921258923660, −8.557947737408889231232239853999, −7.48718246076117438796055171904, −7.00164771604062078997721534675, −6.08800207767426882333125787534, −4.99643510671926578728302809580, −3.40525539001598431616560734667, −1.93638475503339328773278316427, −1.08353751601116611642036280093,
1.98269953821665039382745306698, 3.22031965290119469632352592551, 3.77048739167155032905645609999, 4.87640257880231938157291590842, 5.91792496657641982315668487452, 7.56770578914605770805297710412, 8.487809243160306838944311675233, 8.887081002097575274084208641853, 10.07989407992752115526182645216, 10.34057010073549668600257539055