L(s) = 1 | + (−0.5 + 0.866i)2-s + (0.939 − 1.62i)3-s + (−0.499 − 0.866i)4-s + (−1 + 1.73i)5-s + (0.939 + 1.62i)6-s + 5.06·7-s + 0.999·8-s + (−0.266 − 0.460i)9-s + (−0.999 − 1.73i)10-s − 1.41·11-s − 1.87·12-s + (0.652 + 1.13i)13-s + (−2.53 + 4.38i)14-s + (1.87 + 3.25i)15-s + (−0.5 + 0.866i)16-s + (−1.19 + 2.06i)17-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (0.542 − 0.939i)3-s + (−0.249 − 0.433i)4-s + (−0.447 + 0.774i)5-s + (0.383 + 0.664i)6-s + 1.91·7-s + 0.353·8-s + (−0.0886 − 0.153i)9-s + (−0.316 − 0.547i)10-s − 0.425·11-s − 0.542·12-s + (0.181 + 0.313i)13-s + (−0.676 + 1.17i)14-s + (0.485 + 0.840i)15-s + (−0.125 + 0.216i)16-s + (−0.289 + 0.501i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 722 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.853 - 0.520i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 722 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.853 - 0.520i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.61554 + 0.453574i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.61554 + 0.453574i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 19 | \( 1 \) |
good | 3 | \( 1 + (-0.939 + 1.62i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (1 - 1.73i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 - 5.06T + 7T^{2} \) |
| 11 | \( 1 + 1.41T + 11T^{2} \) |
| 13 | \( 1 + (-0.652 - 1.13i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (1.19 - 2.06i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (-1.53 - 2.65i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (4.22 + 7.32i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 0.369T + 31T^{2} \) |
| 37 | \( 1 - 4.82T + 37T^{2} \) |
| 41 | \( 1 + (-0.766 + 1.32i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.379 + 0.657i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-5.10 - 8.84i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (0.837 + 1.45i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (0.358 - 0.620i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (4.87 + 8.45i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.701 - 1.21i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-3.18 + 5.51i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-2.27 + 3.94i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-1.12 + 1.94i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 3.98T + 83T^{2} \) |
| 89 | \( 1 + (-5.32 - 9.21i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-0.766 + 1.32i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.76109916248802286984961268279, −9.329532332539206484595286269598, −8.328348449278171767433994944415, −7.74429092385787159232137995832, −7.42710490030343193929538406193, −6.33304573847833094426706499332, −5.16621122909524892779286257992, −4.12226092526031727896370259244, −2.43828171141272599897389947806, −1.44170510358132283446788503226,
1.13655825220601057003077281154, 2.57867777261666134303316123665, 3.93594139998928469755898451284, 4.65825449046446000792908430817, 5.27942919757935495160727419481, 7.26290881853055212840635263298, 8.213733365738639706806420550315, 8.639509799140265795158196204923, 9.344147283078552789374244799866, 10.49017078089219300075981081885