L(s) = 1 | − 4.47i·7-s − 2.23·11-s + 4i·13-s − 7i·17-s + 6.70·19-s + 4.47i·23-s + 4.47·31-s − 2i·37-s − 5·41-s − 8.94i·47-s − 13.0·49-s − 6i·53-s + 8.94·59-s + 10·61-s + 2.23i·67-s + ⋯ |
L(s) = 1 | − 1.69i·7-s − 0.674·11-s + 1.10i·13-s − 1.69i·17-s + 1.53·19-s + 0.932i·23-s + 0.803·31-s − 0.328i·37-s − 0.780·41-s − 1.30i·47-s − 1.85·49-s − 0.824i·53-s + 1.16·59-s + 1.28·61-s + 0.273i·67-s + ⋯ |
Λ(s)=(=(7200s/2ΓC(s)L(s)(−0.447+0.894i)Λ(2−s)
Λ(s)=(=(7200s/2ΓC(s+1/2)L(s)(−0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
7200
= 25⋅32⋅52
|
Sign: |
−0.447+0.894i
|
Analytic conductor: |
57.4922 |
Root analytic conductor: |
7.58236 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ7200(6049,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 7200, ( :1/2), −0.447+0.894i)
|
Particular Values
L(1) |
≈ |
1.584453251 |
L(21) |
≈ |
1.584453251 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1+4.47iT−7T2 |
| 11 | 1+2.23T+11T2 |
| 13 | 1−4iT−13T2 |
| 17 | 1+7iT−17T2 |
| 19 | 1−6.70T+19T2 |
| 23 | 1−4.47iT−23T2 |
| 29 | 1+29T2 |
| 31 | 1−4.47T+31T2 |
| 37 | 1+2iT−37T2 |
| 41 | 1+5T+41T2 |
| 43 | 1−43T2 |
| 47 | 1+8.94iT−47T2 |
| 53 | 1+6iT−53T2 |
| 59 | 1−8.94T+59T2 |
| 61 | 1−10T+61T2 |
| 67 | 1−2.23iT−67T2 |
| 71 | 1−8.94T+71T2 |
| 73 | 1+9iT−73T2 |
| 79 | 1−4.47T+79T2 |
| 83 | 1−11.1iT−83T2 |
| 89 | 1+5T+89T2 |
| 97 | 1+2iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.51632126960610043415229032097, −7.07285863866384932498644139999, −6.62989510940219012964138335644, −5.26463914749291873568210757351, −5.01829961303281057425261312630, −3.99259519659740165898230981111, −3.44713520898222059297840299683, −2.46638329762792549391810432918, −1.29348053404205404734656024124, −0.43061105971833427041287858923,
1.12233395391731144027394747420, 2.30861678740120204224271111606, 2.85720539381368682477026792647, 3.65561792616361294338861589601, 4.83719862463972772640668932897, 5.42203298465228833083737670731, 5.92542995203487407829889541354, 6.58268991199515317411171588345, 7.68329358886812684893898113016, 8.253529210944521344842222668456