Properties

Label 2-7200-40.29-c1-0-66
Degree $2$
Conductor $7200$
Sign $-0.316 + 0.948i$
Analytic cond. $57.4922$
Root an. cond. $7.58236$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2i·7-s + 4i·11-s − 6i·17-s + 4i·19-s − 4i·23-s − 6i·29-s − 10·31-s + 4·37-s − 10·41-s − 4·43-s + 4i·47-s + 3·49-s − 10·53-s − 8i·59-s − 8i·61-s + ⋯
L(s)  = 1  + 0.755i·7-s + 1.20i·11-s − 1.45i·17-s + 0.917i·19-s − 0.834i·23-s − 1.11i·29-s − 1.79·31-s + 0.657·37-s − 1.56·41-s − 0.609·43-s + 0.583i·47-s + 0.428·49-s − 1.37·53-s − 1.04i·59-s − 1.02i·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.316 + 0.948i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.316 + 0.948i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7200\)    =    \(2^{5} \cdot 3^{2} \cdot 5^{2}\)
Sign: $-0.316 + 0.948i$
Analytic conductor: \(57.4922\)
Root analytic conductor: \(7.58236\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{7200} (2449, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 7200,\ (\ :1/2),\ -0.316 + 0.948i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6679904337\)
\(L(\frac12)\) \(\approx\) \(0.6679904337\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - 2iT - 7T^{2} \)
11 \( 1 - 4iT - 11T^{2} \)
13 \( 1 + 13T^{2} \)
17 \( 1 + 6iT - 17T^{2} \)
19 \( 1 - 4iT - 19T^{2} \)
23 \( 1 + 4iT - 23T^{2} \)
29 \( 1 + 6iT - 29T^{2} \)
31 \( 1 + 10T + 31T^{2} \)
37 \( 1 - 4T + 37T^{2} \)
41 \( 1 + 10T + 41T^{2} \)
43 \( 1 + 4T + 43T^{2} \)
47 \( 1 - 4iT - 47T^{2} \)
53 \( 1 + 10T + 53T^{2} \)
59 \( 1 + 8iT - 59T^{2} \)
61 \( 1 + 8iT - 61T^{2} \)
67 \( 1 - 12T + 67T^{2} \)
71 \( 1 + 4T + 71T^{2} \)
73 \( 1 - 10iT - 73T^{2} \)
79 \( 1 + 14T + 79T^{2} \)
83 \( 1 + 83T^{2} \)
89 \( 1 - 14T + 89T^{2} \)
97 \( 1 - 10iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.72245141839560348990795671873, −7.01524480659532236746056979592, −6.38453034787917308936478963289, −5.50049250889242634962875459496, −4.94693218148454056287421844696, −4.19761845725705193880022237990, −3.24108789999648633850882728161, −2.35321444672233488719118895608, −1.70213899085251737986528195714, −0.16654237439607242280517030264, 1.07037968262748505843695831373, 1.94932438853790802435305219186, 3.30975093088840062450932444575, 3.57631236054534981209029571192, 4.54387220811817044759358299572, 5.41136457983907222899504045179, 5.99489350071448969992445769950, 6.82572682119283573777787240605, 7.37275693547771654853789522853, 8.174724527848889956806089709828

Graph of the $Z$-function along the critical line