L(s) = 1 | + 2i·7-s + 4i·11-s − 6i·17-s + 4i·19-s − 4i·23-s − 6i·29-s − 10·31-s + 4·37-s − 10·41-s − 4·43-s + 4i·47-s + 3·49-s − 10·53-s − 8i·59-s − 8i·61-s + ⋯ |
L(s) = 1 | + 0.755i·7-s + 1.20i·11-s − 1.45i·17-s + 0.917i·19-s − 0.834i·23-s − 1.11i·29-s − 1.79·31-s + 0.657·37-s − 1.56·41-s − 0.609·43-s + 0.583i·47-s + 0.428·49-s − 1.37·53-s − 1.04i·59-s − 1.02i·61-s + ⋯ |
Λ(s)=(=(7200s/2ΓC(s)L(s)(−0.316+0.948i)Λ(2−s)
Λ(s)=(=(7200s/2ΓC(s+1/2)L(s)(−0.316+0.948i)Λ(1−s)
Degree: |
2 |
Conductor: |
7200
= 25⋅32⋅52
|
Sign: |
−0.316+0.948i
|
Analytic conductor: |
57.4922 |
Root analytic conductor: |
7.58236 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ7200(2449,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 7200, ( :1/2), −0.316+0.948i)
|
Particular Values
L(1) |
≈ |
0.6679904337 |
L(21) |
≈ |
0.6679904337 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1−2iT−7T2 |
| 11 | 1−4iT−11T2 |
| 13 | 1+13T2 |
| 17 | 1+6iT−17T2 |
| 19 | 1−4iT−19T2 |
| 23 | 1+4iT−23T2 |
| 29 | 1+6iT−29T2 |
| 31 | 1+10T+31T2 |
| 37 | 1−4T+37T2 |
| 41 | 1+10T+41T2 |
| 43 | 1+4T+43T2 |
| 47 | 1−4iT−47T2 |
| 53 | 1+10T+53T2 |
| 59 | 1+8iT−59T2 |
| 61 | 1+8iT−61T2 |
| 67 | 1−12T+67T2 |
| 71 | 1+4T+71T2 |
| 73 | 1−10iT−73T2 |
| 79 | 1+14T+79T2 |
| 83 | 1+83T2 |
| 89 | 1−14T+89T2 |
| 97 | 1−10iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.72245141839560348990795671873, −7.01524480659532236746056979592, −6.38453034787917308936478963289, −5.50049250889242634962875459496, −4.94693218148454056287421844696, −4.19761845725705193880022237990, −3.24108789999648633850882728161, −2.35321444672233488719118895608, −1.70213899085251737986528195714, −0.16654237439607242280517030264,
1.07037968262748505843695831373, 1.94932438853790802435305219186, 3.30975093088840062450932444575, 3.57631236054534981209029571192, 4.54387220811817044759358299572, 5.41136457983907222899504045179, 5.99489350071448969992445769950, 6.82572682119283573777787240605, 7.37275693547771654853789522853, 8.174724527848889956806089709828