L(s) = 1 | + (0.724 − 1.57i)3-s + (0.5 + 0.866i)5-s + (1.72 − 2.98i)7-s + (−1.94 − 2.28i)9-s + (1.72 − 0.158i)15-s − 2·17-s + 6.89·19-s + (−3.44 − 4.87i)21-s + (−3.72 − 6.45i)23-s + (−0.499 + 0.866i)25-s + (−5.00 + 1.41i)27-s + (0.949 − 1.64i)29-s + (0.550 + 0.953i)31-s + 3.44·35-s − 6·37-s + ⋯ |
L(s) = 1 | + (0.418 − 0.908i)3-s + (0.223 + 0.387i)5-s + (0.651 − 1.12i)7-s + (−0.649 − 0.760i)9-s + (0.445 − 0.0410i)15-s − 0.485·17-s + 1.58·19-s + (−0.752 − 1.06i)21-s + (−0.776 − 1.34i)23-s + (−0.0999 + 0.173i)25-s + (−0.962 + 0.272i)27-s + (0.176 − 0.305i)29-s + (0.0988 + 0.171i)31-s + 0.583·35-s − 0.986·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.00922 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.00922 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.29837 - 1.28644i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.29837 - 1.28644i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.724 + 1.57i)T \) |
| 5 | \( 1 + (-0.5 - 0.866i)T \) |
good | 7 | \( 1 + (-1.72 + 2.98i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 2T + 17T^{2} \) |
| 19 | \( 1 - 6.89T + 19T^{2} \) |
| 23 | \( 1 + (3.72 + 6.45i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.949 + 1.64i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-0.550 - 0.953i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 6T + 37T^{2} \) |
| 41 | \( 1 + (-4.94 - 8.57i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-5.89 + 10.2i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (4.72 - 8.18i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 7.79T + 53T^{2} \) |
| 59 | \( 1 + (0.550 + 0.953i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.5 + 2.59i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (6.62 + 11.4i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 9.79T + 71T^{2} \) |
| 73 | \( 1 - 13.7T + 73T^{2} \) |
| 79 | \( 1 + (3.44 - 5.97i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (2.72 - 4.71i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 2.79T + 89T^{2} \) |
| 97 | \( 1 + (1 - 1.73i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.26079918218444508237033054458, −9.286671787870741268903462382014, −8.247626688955354888665877254979, −7.54942886089865946097834693420, −6.87981915569236881268368140640, −5.95429030302776918113362440536, −4.63879131146943997356033840944, −3.47539106898845180001855828377, −2.26823031383768460065273737564, −0.962778779675070972594813309367,
1.86822181613396461112825376592, 3.03881253096132605292838542846, 4.23081924586108941434091526201, 5.34128921405890531874754445330, 5.68136778805612990920863920969, 7.37066044645943103308851492332, 8.286359980126810791528012763339, 9.018392504470202848595215541374, 9.581452996931094808019792354208, 10.48885653339331397485250377547