L(s) = 1 | + (0.724 − 1.57i)3-s + (0.5 + 0.866i)5-s + (1.72 − 2.98i)7-s + (−1.94 − 2.28i)9-s + (1.72 − 0.158i)15-s − 2·17-s + 6.89·19-s + (−3.44 − 4.87i)21-s + (−3.72 − 6.45i)23-s + (−0.499 + 0.866i)25-s + (−5.00 + 1.41i)27-s + (0.949 − 1.64i)29-s + (0.550 + 0.953i)31-s + 3.44·35-s − 6·37-s + ⋯ |
L(s) = 1 | + (0.418 − 0.908i)3-s + (0.223 + 0.387i)5-s + (0.651 − 1.12i)7-s + (−0.649 − 0.760i)9-s + (0.445 − 0.0410i)15-s − 0.485·17-s + 1.58·19-s + (−0.752 − 1.06i)21-s + (−0.776 − 1.34i)23-s + (−0.0999 + 0.173i)25-s + (−0.962 + 0.272i)27-s + (0.176 − 0.305i)29-s + (0.0988 + 0.171i)31-s + 0.583·35-s − 0.986·37-s + ⋯ |
Λ(s)=(=(720s/2ΓC(s)L(s)(0.00922+0.999i)Λ(2−s)
Λ(s)=(=(720s/2ΓC(s+1/2)L(s)(0.00922+0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
720
= 24⋅32⋅5
|
Sign: |
0.00922+0.999i
|
Analytic conductor: |
5.74922 |
Root analytic conductor: |
2.39775 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ720(241,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 720, ( :1/2), 0.00922+0.999i)
|
Particular Values
L(1) |
≈ |
1.29837−1.28644i |
L(21) |
≈ |
1.29837−1.28644i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−0.724+1.57i)T |
| 5 | 1+(−0.5−0.866i)T |
good | 7 | 1+(−1.72+2.98i)T+(−3.5−6.06i)T2 |
| 11 | 1+(−5.5−9.52i)T2 |
| 13 | 1+(−6.5+11.2i)T2 |
| 17 | 1+2T+17T2 |
| 19 | 1−6.89T+19T2 |
| 23 | 1+(3.72+6.45i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−0.949+1.64i)T+(−14.5−25.1i)T2 |
| 31 | 1+(−0.550−0.953i)T+(−15.5+26.8i)T2 |
| 37 | 1+6T+37T2 |
| 41 | 1+(−4.94−8.57i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−5.89+10.2i)T+(−21.5−37.2i)T2 |
| 47 | 1+(4.72−8.18i)T+(−23.5−40.7i)T2 |
| 53 | 1−7.79T+53T2 |
| 59 | 1+(0.550+0.953i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−1.5+2.59i)T+(−30.5−52.8i)T2 |
| 67 | 1+(6.62+11.4i)T+(−33.5+58.0i)T2 |
| 71 | 1+9.79T+71T2 |
| 73 | 1−13.7T+73T2 |
| 79 | 1+(3.44−5.97i)T+(−39.5−68.4i)T2 |
| 83 | 1+(2.72−4.71i)T+(−41.5−71.8i)T2 |
| 89 | 1−2.79T+89T2 |
| 97 | 1+(1−1.73i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.26079918218444508237033054458, −9.286671787870741268903462382014, −8.247626688955354888665877254979, −7.54942886089865946097834693420, −6.87981915569236881268368140640, −5.95429030302776918113362440536, −4.63879131146943997356033840944, −3.47539106898845180001855828377, −2.26823031383768460065273737564, −0.962778779675070972594813309367,
1.86822181613396461112825376592, 3.03881253096132605292838542846, 4.23081924586108941434091526201, 5.34128921405890531874754445330, 5.68136778805612990920863920969, 7.37066044645943103308851492332, 8.286359980126810791528012763339, 9.018392504470202848595215541374, 9.581452996931094808019792354208, 10.48885653339331397485250377547