Properties

Label 2-720-80.19-c0-0-1
Degree 22
Conductor 720720
Sign 0.382+0.923i-0.382 + 0.923i
Analytic cond. 0.3593260.359326
Root an. cond. 0.5994380.599438
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.707 − 0.707i)2-s − 1.00i·4-s + (−0.707 − 0.707i)5-s + (−0.707 − 0.707i)8-s − 1.00·10-s − 1.00·16-s − 1.41i·17-s + (1 − i)19-s + (−0.707 + 0.707i)20-s + 1.41i·23-s + 1.00i·25-s + 2i·31-s + (−0.707 + 0.707i)32-s + (−1.00 − 1.00i)34-s − 1.41i·38-s + ⋯
L(s)  = 1  + (0.707 − 0.707i)2-s − 1.00i·4-s + (−0.707 − 0.707i)5-s + (−0.707 − 0.707i)8-s − 1.00·10-s − 1.00·16-s − 1.41i·17-s + (1 − i)19-s + (−0.707 + 0.707i)20-s + 1.41i·23-s + 1.00i·25-s + 2i·31-s + (−0.707 + 0.707i)32-s + (−1.00 − 1.00i)34-s − 1.41i·38-s + ⋯

Functional equation

Λ(s)=(720s/2ΓC(s)L(s)=((0.382+0.923i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.382 + 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(720s/2ΓC(s)L(s)=((0.382+0.923i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.382 + 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 720720    =    243252^{4} \cdot 3^{2} \cdot 5
Sign: 0.382+0.923i-0.382 + 0.923i
Analytic conductor: 0.3593260.359326
Root analytic conductor: 0.5994380.599438
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ720(19,)\chi_{720} (19, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 720, ( :0), 0.382+0.923i)(2,\ 720,\ (\ :0),\ -0.382 + 0.923i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.1725922301.172592230
L(12)L(\frac12) \approx 1.1725922301.172592230
L(1)L(1) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.707+0.707i)T 1 + (-0.707 + 0.707i)T
3 1 1
5 1+(0.707+0.707i)T 1 + (0.707 + 0.707i)T
good7 1T2 1 - T^{2}
11 1+iT2 1 + iT^{2}
13 1iT2 1 - iT^{2}
17 1+1.41iTT2 1 + 1.41iT - T^{2}
19 1+(1+i)TiT2 1 + (-1 + i)T - iT^{2}
23 11.41iTT2 1 - 1.41iT - T^{2}
29 1+iT2 1 + iT^{2}
31 12iTT2 1 - 2iT - T^{2}
37 1+iT2 1 + iT^{2}
41 1T2 1 - T^{2}
43 1iT2 1 - iT^{2}
47 11.41T+T2 1 - 1.41T + T^{2}
53 1+iT2 1 + iT^{2}
59 1+iT2 1 + iT^{2}
61 1+(1+i)T+iT2 1 + (1 + i)T + iT^{2}
67 1+iT2 1 + iT^{2}
71 1+T2 1 + T^{2}
73 1+T2 1 + T^{2}
79 1T2 1 - T^{2}
83 1+(1.411.41i)T+iT2 1 + (-1.41 - 1.41i)T + iT^{2}
89 1T2 1 - T^{2}
97 1T2 1 - T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.58622698184824029020416472264, −9.383612710503227533419508223958, −9.042360657172713694227520769634, −7.62033086590413236406189592231, −6.85744546489755928801315468096, −5.34522420386373569232417709751, −4.95770460266557193651478883978, −3.76971133479913460119449386306, −2.83457145538099995172097371699, −1.13445124268816426143868428178, 2.51040726453255872723452292787, 3.71103122058905116286250460304, 4.32768987079081907197032935784, 5.74710953651620593703347171559, 6.36693237660249894171426637406, 7.45237123227378816983632751686, 7.970036923532743868076785153349, 8.873034328356344227895818577097, 10.18655162890125860536696265526, 10.97317434809376828717867320608

Graph of the ZZ-function along the critical line