L(s) = 1 | + (0.707 − 0.707i)5-s + (1 + i)13-s + (−1.41 − 1.41i)17-s − 1.00i·25-s + 1.41·29-s + (−1 + i)37-s + 1.41i·41-s − i·49-s + (−1.41 + 1.41i)53-s + 1.41·65-s + (−1 − i)73-s − 2.00·85-s − 1.41·89-s + (−1 + i)97-s + 1.41i·101-s + ⋯ |
L(s) = 1 | + (0.707 − 0.707i)5-s + (1 + i)13-s + (−1.41 − 1.41i)17-s − 1.00i·25-s + 1.41·29-s + (−1 + i)37-s + 1.41i·41-s − i·49-s + (−1.41 + 1.41i)53-s + 1.41·65-s + (−1 − i)73-s − 2.00·85-s − 1.41·89-s + (−1 + i)97-s + 1.41i·101-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.927 + 0.374i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.927 + 0.374i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.066328661\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.066328661\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.707 + 0.707i)T \) |
good | 7 | \( 1 + iT^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + (-1 - i)T + iT^{2} \) |
| 17 | \( 1 + (1.41 + 1.41i)T + iT^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + iT^{2} \) |
| 29 | \( 1 - 1.41T + T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + (1 - i)T - iT^{2} \) |
| 41 | \( 1 - 1.41iT - T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 + (1.41 - 1.41i)T - iT^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 + iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (1 + i)T + iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 + 1.41T + T^{2} \) |
| 97 | \( 1 + (1 - i)T - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.53305327494656311680483445437, −9.522693860509059120906141963969, −8.953670645370411018823123301450, −8.222892346881707750128076094486, −6.81254689025469872329129787550, −6.28110856756256488084407364861, −5.00197457637456366638609138068, −4.36013492501150072990291401627, −2.79133556326799713206313610323, −1.48032047084430832667545811613,
1.79875325280363937898677624188, 3.03630434389988737926753874782, 4.11886355285127020876414119677, 5.50816170288864579214599052022, 6.25047255963373333986948750064, 6.99653012123343644775849492610, 8.248060925027745167681633201336, 8.861739567397791545992470839305, 10.01406325985155680674132560920, 10.71583165439973006758104148918