L(s) = 1 | + (−2 + 11i)5-s − 2i·7-s + 70·11-s + 54i·13-s − 22i·17-s + 24·19-s − 100i·23-s + (−117 − 44i)25-s + 216·29-s − 208·31-s + (22 + 4i)35-s + 254i·37-s + 206·41-s − 292i·43-s + 320i·47-s + ⋯ |
L(s) = 1 | + (−0.178 + 0.983i)5-s − 0.107i·7-s + 1.91·11-s + 1.15i·13-s − 0.313i·17-s + 0.289·19-s − 0.906i·23-s + (−0.936 − 0.351i)25-s + 1.38·29-s − 1.20·31-s + (0.106 + 0.0193i)35-s + 1.12i·37-s + 0.784·41-s − 1.03i·43-s + 0.993i·47-s + ⋯ |
Λ(s)=(=(720s/2ΓC(s)L(s)(0.178−0.983i)Λ(4−s)
Λ(s)=(=(720s/2ΓC(s+3/2)L(s)(0.178−0.983i)Λ(1−s)
Degree: |
2 |
Conductor: |
720
= 24⋅32⋅5
|
Sign: |
0.178−0.983i
|
Analytic conductor: |
42.4813 |
Root analytic conductor: |
6.51777 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ720(289,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 720, ( :3/2), 0.178−0.983i)
|
Particular Values
L(2) |
≈ |
2.075168328 |
L(21) |
≈ |
2.075168328 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(2−11i)T |
good | 7 | 1+2iT−343T2 |
| 11 | 1−70T+1.33e3T2 |
| 13 | 1−54iT−2.19e3T2 |
| 17 | 1+22iT−4.91e3T2 |
| 19 | 1−24T+6.85e3T2 |
| 23 | 1+100iT−1.21e4T2 |
| 29 | 1−216T+2.43e4T2 |
| 31 | 1+208T+2.97e4T2 |
| 37 | 1−254iT−5.06e4T2 |
| 41 | 1−206T+6.89e4T2 |
| 43 | 1+292iT−7.95e4T2 |
| 47 | 1−320iT−1.03e5T2 |
| 53 | 1−402iT−1.48e5T2 |
| 59 | 1−370T+2.05e5T2 |
| 61 | 1+550T+2.26e5T2 |
| 67 | 1−728iT−3.00e5T2 |
| 71 | 1+540T+3.57e5T2 |
| 73 | 1−604iT−3.89e5T2 |
| 79 | 1−792T+4.93e5T2 |
| 83 | 1−404iT−5.71e5T2 |
| 89 | 1+938T+7.04e5T2 |
| 97 | 1+56iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.21494300752468365668362930674, −9.316450769193020078576240448388, −8.653004967483442220759748084364, −7.31706722832136606978202817879, −6.73957078026412521026314925313, −6.06182631274567230773366555169, −4.46593762602424361006896742301, −3.77381393481421268474641196108, −2.54958695918014148132565777785, −1.20951081433644063263851661442,
0.66583347662454195314243970244, 1.66833690159052246119388559745, 3.39744716806499982102542324336, 4.23169931365293033787417860015, 5.34157028449350730733491070418, 6.15067808331699079056410598138, 7.28970608964527741928219389677, 8.200948299399744884715549749707, 9.048788365532477163244870384900, 9.568100281711732189548584610546