L(s) = 1 | + (−2 + 11i)5-s − 2i·7-s + 70·11-s + 54i·13-s − 22i·17-s + 24·19-s − 100i·23-s + (−117 − 44i)25-s + 216·29-s − 208·31-s + (22 + 4i)35-s + 254i·37-s + 206·41-s − 292i·43-s + 320i·47-s + ⋯ |
L(s) = 1 | + (−0.178 + 0.983i)5-s − 0.107i·7-s + 1.91·11-s + 1.15i·13-s − 0.313i·17-s + 0.289·19-s − 0.906i·23-s + (−0.936 − 0.351i)25-s + 1.38·29-s − 1.20·31-s + (0.106 + 0.0193i)35-s + 1.12i·37-s + 0.784·41-s − 1.03i·43-s + 0.993i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.178 - 0.983i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.178 - 0.983i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.075168328\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.075168328\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (2 - 11i)T \) |
good | 7 | \( 1 + 2iT - 343T^{2} \) |
| 11 | \( 1 - 70T + 1.33e3T^{2} \) |
| 13 | \( 1 - 54iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 22iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 24T + 6.85e3T^{2} \) |
| 23 | \( 1 + 100iT - 1.21e4T^{2} \) |
| 29 | \( 1 - 216T + 2.43e4T^{2} \) |
| 31 | \( 1 + 208T + 2.97e4T^{2} \) |
| 37 | \( 1 - 254iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 206T + 6.89e4T^{2} \) |
| 43 | \( 1 + 292iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 320iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 402iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 370T + 2.05e5T^{2} \) |
| 61 | \( 1 + 550T + 2.26e5T^{2} \) |
| 67 | \( 1 - 728iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 540T + 3.57e5T^{2} \) |
| 73 | \( 1 - 604iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 792T + 4.93e5T^{2} \) |
| 83 | \( 1 - 404iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 938T + 7.04e5T^{2} \) |
| 97 | \( 1 + 56iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.21494300752468365668362930674, −9.316450769193020078576240448388, −8.653004967483442220759748084364, −7.31706722832136606978202817879, −6.73957078026412521026314925313, −6.06182631274567230773366555169, −4.46593762602424361006896742301, −3.77381393481421268474641196108, −2.54958695918014148132565777785, −1.20951081433644063263851661442,
0.66583347662454195314243970244, 1.66833690159052246119388559745, 3.39744716806499982102542324336, 4.23169931365293033787417860015, 5.34157028449350730733491070418, 6.15067808331699079056410598138, 7.28970608964527741928219389677, 8.200948299399744884715549749707, 9.048788365532477163244870384900, 9.568100281711732189548584610546