L(s) = 1 | + (−1 − 2i)5-s + (1 − i)13-s + (−5 − 5i)17-s + (−3 + 4i)25-s − 10i·29-s + (−7 − 7i)37-s − 10·41-s + 7i·49-s + (5 − 5i)53-s + 12·61-s + (−3 − i)65-s + (11 − 11i)73-s + (−5 + 15i)85-s + 10i·89-s + (−13 − 13i)97-s + ⋯ |
L(s) = 1 | + (−0.447 − 0.894i)5-s + (0.277 − 0.277i)13-s + (−1.21 − 1.21i)17-s + (−0.600 + 0.800i)25-s − 1.85i·29-s + (−1.15 − 1.15i)37-s − 1.56·41-s + i·49-s + (0.686 − 0.686i)53-s + 1.53·61-s + (−0.372 − 0.124i)65-s + (1.28 − 1.28i)73-s + (−0.542 + 1.62i)85-s + 1.05i·89-s + (−1.31 − 1.31i)97-s + ⋯ |
Λ(s)=(=(720s/2ΓC(s)L(s)(−0.525+0.850i)Λ(2−s)
Λ(s)=(=(720s/2ΓC(s+1/2)L(s)(−0.525+0.850i)Λ(1−s)
Degree: |
2 |
Conductor: |
720
= 24⋅32⋅5
|
Sign: |
−0.525+0.850i
|
Analytic conductor: |
5.74922 |
Root analytic conductor: |
2.39775 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ720(127,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 720, ( :1/2), −0.525+0.850i)
|
Particular Values
L(1) |
≈ |
0.458065−0.821587i |
L(21) |
≈ |
0.458065−0.821587i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(1+2i)T |
good | 7 | 1−7iT2 |
| 11 | 1−11T2 |
| 13 | 1+(−1+i)T−13iT2 |
| 17 | 1+(5+5i)T+17iT2 |
| 19 | 1+19T2 |
| 23 | 1+23iT2 |
| 29 | 1+10iT−29T2 |
| 31 | 1−31T2 |
| 37 | 1+(7+7i)T+37iT2 |
| 41 | 1+10T+41T2 |
| 43 | 1+43iT2 |
| 47 | 1−47iT2 |
| 53 | 1+(−5+5i)T−53iT2 |
| 59 | 1+59T2 |
| 61 | 1−12T+61T2 |
| 67 | 1−67iT2 |
| 71 | 1−71T2 |
| 73 | 1+(−11+11i)T−73iT2 |
| 79 | 1+79T2 |
| 83 | 1+83iT2 |
| 89 | 1−10iT−89T2 |
| 97 | 1+(13+13i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.01494075156774709424674860623, −9.155922408831269568252927866396, −8.480562004187249511904055025426, −7.60198276477324176105330257627, −6.65049688413170539207160463909, −5.46976334895499297820517657150, −4.63988777221551882064743399918, −3.67102638766190293415429729947, −2.18720762862321371885776946629, −0.47540063476749427317373765702,
1.86923672087254418009846353794, 3.23630675826133321837138035102, 4.09557281354080656170450891442, 5.31758959749386313518572698943, 6.63553547403116105017187727342, 6.91800161053221953059438822094, 8.256940296972529450224820556715, 8.780335037974028390004830251118, 10.08844439675758383541538758720, 10.69070048906599955411700646339