L(s) = 1 | + (−2 + i)5-s + (−5 − 5i)13-s + (5 − 5i)17-s + (3 − 4i)25-s − 4i·29-s + (5 − 5i)37-s − 8·41-s − 7i·49-s + (−5 − 5i)53-s − 12·61-s + (15 + 5i)65-s + (5 + 5i)73-s + (−5 + 15i)85-s + 16i·89-s + (5 − 5i)97-s + ⋯ |
L(s) = 1 | + (−0.894 + 0.447i)5-s + (−1.38 − 1.38i)13-s + (1.21 − 1.21i)17-s + (0.600 − 0.800i)25-s − 0.742i·29-s + (0.821 − 0.821i)37-s − 1.24·41-s − i·49-s + (−0.686 − 0.686i)53-s − 1.53·61-s + (1.86 + 0.620i)65-s + (0.585 + 0.585i)73-s + (−0.542 + 1.62i)85-s + 1.69i·89-s + (0.507 − 0.507i)97-s + ⋯ |
Λ(s)=(=(720s/2ΓC(s)L(s)(−0.0898+0.995i)Λ(2−s)
Λ(s)=(=(720s/2ΓC(s+1/2)L(s)(−0.0898+0.995i)Λ(1−s)
Degree: |
2 |
Conductor: |
720
= 24⋅32⋅5
|
Sign: |
−0.0898+0.995i
|
Analytic conductor: |
5.74922 |
Root analytic conductor: |
2.39775 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ720(703,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 720, ( :1/2), −0.0898+0.995i)
|
Particular Values
L(1) |
≈ |
0.558495−0.611121i |
L(21) |
≈ |
0.558495−0.611121i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(2−i)T |
good | 7 | 1+7iT2 |
| 11 | 1−11T2 |
| 13 | 1+(5+5i)T+13iT2 |
| 17 | 1+(−5+5i)T−17iT2 |
| 19 | 1+19T2 |
| 23 | 1−23iT2 |
| 29 | 1+4iT−29T2 |
| 31 | 1−31T2 |
| 37 | 1+(−5+5i)T−37iT2 |
| 41 | 1+8T+41T2 |
| 43 | 1−43iT2 |
| 47 | 1+47iT2 |
| 53 | 1+(5+5i)T+53iT2 |
| 59 | 1+59T2 |
| 61 | 1+12T+61T2 |
| 67 | 1+67iT2 |
| 71 | 1−71T2 |
| 73 | 1+(−5−5i)T+73iT2 |
| 79 | 1+79T2 |
| 83 | 1−83iT2 |
| 89 | 1−16iT−89T2 |
| 97 | 1+(−5+5i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.13501475744345699642418941512, −9.541155496830400545204402493216, −8.147513325142824767473202160957, −7.65505867975109223610531894634, −6.90350327093729244211903579518, −5.56676128846362329260603883788, −4.75168108136968396186086502134, −3.44409810353912618084281220687, −2.63212306855336792251199475316, −0.43842981696271729148507804072,
1.56151718046754628350246714915, 3.17301110087739539798135539875, 4.28295712761428366738200999132, 5.01419410160804988396575696349, 6.28591592061112047681363820206, 7.31861043615295832735158602451, 7.968249838097597296014444644572, 8.921850869445639689069105511047, 9.715288814539549451072271140271, 10.64065210830210825438694943800