Properties

Label 2-720-1.1-c5-0-41
Degree $2$
Conductor $720$
Sign $-1$
Analytic cond. $115.476$
Root an. cond. $10.7459$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 25·5-s + 154.·7-s − 254.·11-s + 928.·13-s − 1.07e3·17-s − 1.12e3·19-s − 3.90e3·23-s + 625·25-s + 211.·29-s + 5.51e3·31-s − 3.86e3·35-s − 1.17e4·37-s − 1.08e4·41-s + 1.19e4·43-s + 2.58e4·47-s + 7.12e3·49-s + 2.20e4·53-s + 6.36e3·55-s − 3.36e4·59-s + 4.01e3·61-s − 2.32e4·65-s − 2.04e4·67-s + 7.55e3·71-s − 7.61e4·73-s − 3.94e4·77-s + 7.93e4·79-s − 1.81e4·83-s + ⋯
L(s)  = 1  − 0.447·5-s + 1.19·7-s − 0.634·11-s + 1.52·13-s − 0.900·17-s − 0.713·19-s − 1.54·23-s + 0.200·25-s + 0.0466·29-s + 1.03·31-s − 0.533·35-s − 1.40·37-s − 1.00·41-s + 0.987·43-s + 1.70·47-s + 0.423·49-s + 1.07·53-s + 0.283·55-s − 1.25·59-s + 0.138·61-s − 0.681·65-s − 0.555·67-s + 0.177·71-s − 1.67·73-s − 0.757·77-s + 1.43·79-s − 0.289·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(720\)    =    \(2^{4} \cdot 3^{2} \cdot 5\)
Sign: $-1$
Analytic conductor: \(115.476\)
Root analytic conductor: \(10.7459\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 720,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + 25T \)
good7 \( 1 - 154.T + 1.68e4T^{2} \)
11 \( 1 + 254.T + 1.61e5T^{2} \)
13 \( 1 - 928.T + 3.71e5T^{2} \)
17 \( 1 + 1.07e3T + 1.41e6T^{2} \)
19 \( 1 + 1.12e3T + 2.47e6T^{2} \)
23 \( 1 + 3.90e3T + 6.43e6T^{2} \)
29 \( 1 - 211.T + 2.05e7T^{2} \)
31 \( 1 - 5.51e3T + 2.86e7T^{2} \)
37 \( 1 + 1.17e4T + 6.93e7T^{2} \)
41 \( 1 + 1.08e4T + 1.15e8T^{2} \)
43 \( 1 - 1.19e4T + 1.47e8T^{2} \)
47 \( 1 - 2.58e4T + 2.29e8T^{2} \)
53 \( 1 - 2.20e4T + 4.18e8T^{2} \)
59 \( 1 + 3.36e4T + 7.14e8T^{2} \)
61 \( 1 - 4.01e3T + 8.44e8T^{2} \)
67 \( 1 + 2.04e4T + 1.35e9T^{2} \)
71 \( 1 - 7.55e3T + 1.80e9T^{2} \)
73 \( 1 + 7.61e4T + 2.07e9T^{2} \)
79 \( 1 - 7.93e4T + 3.07e9T^{2} \)
83 \( 1 + 1.81e4T + 3.93e9T^{2} \)
89 \( 1 - 4.70e4T + 5.58e9T^{2} \)
97 \( 1 + 1.57e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.890916420467754209973365992533, −8.373520423928291810274042775279, −7.69353438965169057101861409057, −6.54545505527264294515936238169, −5.62151867247972986193748776591, −4.52653552869781314567331192283, −3.82825856920068013286456852355, −2.37756711303194652295179880894, −1.35492842188018016941346840390, 0, 1.35492842188018016941346840390, 2.37756711303194652295179880894, 3.82825856920068013286456852355, 4.52653552869781314567331192283, 5.62151867247972986193748776591, 6.54545505527264294515936238169, 7.69353438965169057101861409057, 8.373520423928291810274042775279, 8.890916420467754209973365992533

Graph of the $Z$-function along the critical line