Properties

Label 2-720-1.1-c5-0-3
Degree $2$
Conductor $720$
Sign $1$
Analytic cond. $115.476$
Root an. cond. $10.7459$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 25·5-s − 223.·7-s − 685.·11-s + 125.·13-s − 475.·17-s − 2.44e3·19-s − 346.·23-s + 625·25-s − 4.34e3·29-s + 2.78e3·31-s − 5.59e3·35-s − 5.06e3·37-s + 3.76e3·41-s + 1.63e4·43-s − 1.58e4·47-s + 3.32e4·49-s − 1.96e4·53-s − 1.71e4·55-s + 3.54e4·59-s + 1.89e4·61-s + 3.14e3·65-s − 4.87e4·67-s + 7.69e4·71-s + 4.33e4·73-s + 1.53e5·77-s − 7.96e4·79-s + 674.·83-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.72·7-s − 1.70·11-s + 0.206·13-s − 0.398·17-s − 1.55·19-s − 0.136·23-s + 0.200·25-s − 0.960·29-s + 0.520·31-s − 0.772·35-s − 0.608·37-s + 0.349·41-s + 1.34·43-s − 1.04·47-s + 1.98·49-s − 0.958·53-s − 0.763·55-s + 1.32·59-s + 0.651·61-s + 0.0924·65-s − 1.32·67-s + 1.81·71-s + 0.952·73-s + 2.94·77-s − 1.43·79-s + 0.0107·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(720\)    =    \(2^{4} \cdot 3^{2} \cdot 5\)
Sign: $1$
Analytic conductor: \(115.476\)
Root analytic conductor: \(10.7459\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 720,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.6632703016\)
\(L(\frac12)\) \(\approx\) \(0.6632703016\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - 25T \)
good7 \( 1 + 223.T + 1.68e4T^{2} \)
11 \( 1 + 685.T + 1.61e5T^{2} \)
13 \( 1 - 125.T + 3.71e5T^{2} \)
17 \( 1 + 475.T + 1.41e6T^{2} \)
19 \( 1 + 2.44e3T + 2.47e6T^{2} \)
23 \( 1 + 346.T + 6.43e6T^{2} \)
29 \( 1 + 4.34e3T + 2.05e7T^{2} \)
31 \( 1 - 2.78e3T + 2.86e7T^{2} \)
37 \( 1 + 5.06e3T + 6.93e7T^{2} \)
41 \( 1 - 3.76e3T + 1.15e8T^{2} \)
43 \( 1 - 1.63e4T + 1.47e8T^{2} \)
47 \( 1 + 1.58e4T + 2.29e8T^{2} \)
53 \( 1 + 1.96e4T + 4.18e8T^{2} \)
59 \( 1 - 3.54e4T + 7.14e8T^{2} \)
61 \( 1 - 1.89e4T + 8.44e8T^{2} \)
67 \( 1 + 4.87e4T + 1.35e9T^{2} \)
71 \( 1 - 7.69e4T + 1.80e9T^{2} \)
73 \( 1 - 4.33e4T + 2.07e9T^{2} \)
79 \( 1 + 7.96e4T + 3.07e9T^{2} \)
83 \( 1 - 674.T + 3.93e9T^{2} \)
89 \( 1 + 5.69e4T + 5.58e9T^{2} \)
97 \( 1 - 8.21e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.746978259313233038757508733217, −8.897013003502564056854845800386, −7.950219466818259094684483133979, −6.84998734049395645569352196508, −6.16298839822493153152094691114, −5.32220585279314545641806314533, −4.05080243673744788987092125262, −2.93625416663438145677146564340, −2.17437641179912125021763040671, −0.35123185088463889541935502813, 0.35123185088463889541935502813, 2.17437641179912125021763040671, 2.93625416663438145677146564340, 4.05080243673744788987092125262, 5.32220585279314545641806314533, 6.16298839822493153152094691114, 6.84998734049395645569352196508, 7.950219466818259094684483133979, 8.897013003502564056854845800386, 9.746978259313233038757508733217

Graph of the $Z$-function along the critical line