L(s) = 1 | + (−0.965 + 0.258i)2-s + (−0.608 + 0.793i)3-s + (0.866 − 0.499i)4-s + (0.459 − 3.48i)5-s + (0.382 − 0.923i)6-s + (1.51 + 2.16i)7-s + (−0.707 + 0.707i)8-s + (−0.258 − 0.965i)9-s + (0.459 + 3.48i)10-s + (0.377 − 0.0497i)11-s + (−0.130 + 0.991i)12-s + 3.95i·13-s + (−2.02 − 1.70i)14-s + (2.48 + 2.48i)15-s + (0.500 − 0.866i)16-s + (1.64 − 3.78i)17-s + ⋯ |
L(s) = 1 | + (−0.683 + 0.183i)2-s + (−0.351 + 0.458i)3-s + (0.433 − 0.249i)4-s + (0.205 − 1.56i)5-s + (0.156 − 0.377i)6-s + (0.573 + 0.819i)7-s + (−0.249 + 0.249i)8-s + (−0.0862 − 0.321i)9-s + (0.145 + 1.10i)10-s + (0.113 − 0.0149i)11-s + (−0.0376 + 0.286i)12-s + 1.09i·13-s + (−0.541 − 0.454i)14-s + (0.642 + 0.642i)15-s + (0.125 − 0.216i)16-s + (0.398 − 0.917i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 714 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.979 + 0.203i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 714 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.979 + 0.203i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.08280 - 0.111421i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.08280 - 0.111421i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.965 - 0.258i)T \) |
| 3 | \( 1 + (0.608 - 0.793i)T \) |
| 7 | \( 1 + (-1.51 - 2.16i)T \) |
| 17 | \( 1 + (-1.64 + 3.78i)T \) |
good | 5 | \( 1 + (-0.459 + 3.48i)T + (-4.82 - 1.29i)T^{2} \) |
| 11 | \( 1 + (-0.377 + 0.0497i)T + (10.6 - 2.84i)T^{2} \) |
| 13 | \( 1 - 3.95iT - 13T^{2} \) |
| 19 | \( 1 + (0.0537 - 0.0144i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-1.95 - 2.54i)T + (-5.95 + 22.2i)T^{2} \) |
| 29 | \( 1 + (-6.19 + 2.56i)T + (20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 + (-6.77 + 8.83i)T + (-8.02 - 29.9i)T^{2} \) |
| 37 | \( 1 + (8.33 + 1.09i)T + (35.7 + 9.57i)T^{2} \) |
| 41 | \( 1 + (1.96 + 0.815i)T + (28.9 + 28.9i)T^{2} \) |
| 43 | \( 1 + (-4.83 + 4.83i)T - 43iT^{2} \) |
| 47 | \( 1 + (-2.91 - 1.68i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.802 + 2.99i)T + (-45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (-10.2 - 2.74i)T + (51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (-7.06 + 5.42i)T + (15.7 - 58.9i)T^{2} \) |
| 67 | \( 1 + (-7.77 - 13.4i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (0.889 + 2.14i)T + (-50.2 + 50.2i)T^{2} \) |
| 73 | \( 1 + (-10.9 - 8.42i)T + (18.8 + 70.5i)T^{2} \) |
| 79 | \( 1 + (2.07 + 2.69i)T + (-20.4 + 76.3i)T^{2} \) |
| 83 | \( 1 + (7.53 + 7.53i)T + 83iT^{2} \) |
| 89 | \( 1 + (-2.99 - 1.72i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (0.560 - 0.232i)T + (68.5 - 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.04450853157417639860766079041, −9.417304954239450491278630049735, −8.770893524850887770493085229876, −8.178738875052193523685917276289, −6.91912721261072262405315790228, −5.72277145564374024965298844819, −5.10374900515622628984099222020, −4.21784041097398635243924327815, −2.27633157515579188085364188013, −0.939791304462965816217833546335,
1.16795689056725922639128144644, 2.61529102740898894717327002385, 3.57834834462970370712337434394, 5.17375698537428158152258715512, 6.49785086090239255866343461127, 6.87490366477881158660202656934, 7.85138200610198861388018805492, 8.478398994724795161023582221302, 10.07432417952345288252481129710, 10.53942689056939300525412674715