Properties

Label 2-7098-1.1-c1-0-24
Degree $2$
Conductor $7098$
Sign $1$
Analytic cond. $56.6778$
Root an. cond. $7.52846$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 0.561·5-s − 6-s + 7-s + 8-s + 9-s − 0.561·10-s − 1.43·11-s − 12-s + 14-s + 0.561·15-s + 16-s − 5.68·17-s + 18-s + 2.56·19-s − 0.561·20-s − 21-s − 1.43·22-s − 5.68·23-s − 24-s − 4.68·25-s − 27-s + 28-s − 2.56·29-s + 0.561·30-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 0.5·4-s − 0.251·5-s − 0.408·6-s + 0.377·7-s + 0.353·8-s + 0.333·9-s − 0.177·10-s − 0.433·11-s − 0.288·12-s + 0.267·14-s + 0.144·15-s + 0.250·16-s − 1.37·17-s + 0.235·18-s + 0.587·19-s − 0.125·20-s − 0.218·21-s − 0.306·22-s − 1.18·23-s − 0.204·24-s − 0.936·25-s − 0.192·27-s + 0.188·28-s − 0.475·29-s + 0.102·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7098 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7098 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7098\)    =    \(2 \cdot 3 \cdot 7 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(56.6778\)
Root analytic conductor: \(7.52846\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{7098} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7098,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.247309430\)
\(L(\frac12)\) \(\approx\) \(2.247309430\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 + T \)
7 \( 1 - T \)
13 \( 1 \)
good5 \( 1 + 0.561T + 5T^{2} \)
11 \( 1 + 1.43T + 11T^{2} \)
17 \( 1 + 5.68T + 17T^{2} \)
19 \( 1 - 2.56T + 19T^{2} \)
23 \( 1 + 5.68T + 23T^{2} \)
29 \( 1 + 2.56T + 29T^{2} \)
31 \( 1 - 10.2T + 31T^{2} \)
37 \( 1 - 1.68T + 37T^{2} \)
41 \( 1 - 4T + 41T^{2} \)
43 \( 1 - 10.5T + 43T^{2} \)
47 \( 1 + 6.24T + 47T^{2} \)
53 \( 1 - 13.1T + 53T^{2} \)
59 \( 1 - 12.2T + 59T^{2} \)
61 \( 1 - 2.56T + 61T^{2} \)
67 \( 1 - 7.12T + 67T^{2} \)
71 \( 1 + 15.3T + 71T^{2} \)
73 \( 1 + 7.43T + 73T^{2} \)
79 \( 1 - 16T + 79T^{2} \)
83 \( 1 + 2T + 83T^{2} \)
89 \( 1 - 8T + 89T^{2} \)
97 \( 1 - 10T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.79571109458066037838248426877, −7.16479733070261756040025378850, −6.35692248005960227911859256725, −5.80737963788340633664991958501, −5.09766888889745016499914593069, −4.30527091043377436630949872107, −3.91593835201335488588665237966, −2.66110029507046352991247456887, −2.00123825167660119957600993247, −0.68938717688454125567124135762, 0.68938717688454125567124135762, 2.00123825167660119957600993247, 2.66110029507046352991247456887, 3.91593835201335488588665237966, 4.30527091043377436630949872107, 5.09766888889745016499914593069, 5.80737963788340633664991958501, 6.35692248005960227911859256725, 7.16479733070261756040025378850, 7.79571109458066037838248426877

Graph of the $Z$-function along the critical line