| L(s) = 1 | − i·3-s − 1.73i·5-s + i·11-s − 1.73·15-s − 1.73·23-s − 1.99·25-s − i·27-s + 1.73·31-s + 33-s + 1.73i·37-s + 49-s + 1.73·55-s − i·59-s + i·67-s + 1.73i·69-s + ⋯ |
| L(s) = 1 | − i·3-s − 1.73i·5-s + i·11-s − 1.73·15-s − 1.73·23-s − 1.99·25-s − i·27-s + 1.73·31-s + 33-s + 1.73i·37-s + 49-s + 1.73·55-s − i·59-s + i·67-s + 1.73i·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.258 + 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.258 + 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9486225243\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.9486225243\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 11 | \( 1 - iT \) |
| good | 3 | \( 1 + iT - T^{2} \) |
| 5 | \( 1 + 1.73iT - T^{2} \) |
| 7 | \( 1 - T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + 1.73T + T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 - 1.73T + T^{2} \) |
| 37 | \( 1 - 1.73iT - T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + iT - T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 - iT - T^{2} \) |
| 71 | \( 1 - 1.73T + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + T + T^{2} \) |
| 97 | \( 1 + T + T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.08040698691470360840492460271, −9.604008416826061200504921776161, −8.340571488010252642225880465354, −8.043359828562033382978911581842, −6.93407456699106966502233083049, −5.98962888256222667869782967086, −4.85720412065493504939454193658, −4.16609623914396943708179056102, −2.17212466483325350060575125605, −1.16728486179106102319791020140,
2.44568619602551735819792948858, 3.48722383147019187723139050942, 4.19158621722119490265550981881, 5.65899472335893004724788390613, 6.40521337497273557715870681164, 7.37671498738757632703418864884, 8.314266631517820958403245538905, 9.492945756502734424269664877455, 10.20745764341117358145841610966, 10.72484547208088205797295849686