| L(s) = 1 | + (0.190 − 0.587i)3-s + (−1.30 + 0.951i)5-s + (0.190 + 0.587i)7-s + (2.11 + 1.53i)9-s + (−3.23 + 0.726i)11-s + (0.690 + 0.502i)13-s + (0.309 + 0.951i)15-s + (−3.92 + 2.85i)17-s + (−0.572 + 1.76i)19-s + 0.381·21-s + 4·23-s + (−0.736 + 2.26i)25-s + (2.80 − 2.04i)27-s + (2.57 + 7.91i)29-s + (−8.16 − 5.93i)31-s + ⋯ |
| L(s) = 1 | + (0.110 − 0.339i)3-s + (−0.585 + 0.425i)5-s + (0.0721 + 0.222i)7-s + (0.706 + 0.512i)9-s + (−0.975 + 0.219i)11-s + (0.191 + 0.139i)13-s + (0.0797 + 0.245i)15-s + (−0.952 + 0.691i)17-s + (−0.131 + 0.404i)19-s + 0.0833·21-s + 0.834·23-s + (−0.147 + 0.453i)25-s + (0.540 − 0.392i)27-s + (0.477 + 1.47i)29-s + (−1.46 − 1.06i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0694 - 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 704 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0694 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.814400 + 0.759653i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.814400 + 0.759653i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 11 | \( 1 + (3.23 - 0.726i)T \) |
| good | 3 | \( 1 + (-0.190 + 0.587i)T + (-2.42 - 1.76i)T^{2} \) |
| 5 | \( 1 + (1.30 - 0.951i)T + (1.54 - 4.75i)T^{2} \) |
| 7 | \( 1 + (-0.190 - 0.587i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (-0.690 - 0.502i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (3.92 - 2.85i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (0.572 - 1.76i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 - 4T + 23T^{2} \) |
| 29 | \( 1 + (-2.57 - 7.91i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (8.16 + 5.93i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (-2.28 - 7.02i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (2.28 - 7.02i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 - 10.4T + 43T^{2} \) |
| 47 | \( 1 + (2.95 - 9.09i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (1.30 + 0.951i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (1.42 + 4.39i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (-3.92 + 2.85i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + 5.52T + 67T^{2} \) |
| 71 | \( 1 + (-4.92 + 3.57i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (3.04 + 9.37i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (-2.30 - 1.67i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (9.39 - 6.82i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 - 4.47T + 89T^{2} \) |
| 97 | \( 1 + (2.69 + 1.95i)T + (29.9 + 92.2i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.90024223665979221901694500288, −9.864088906793680050301182717305, −8.801121890430398515291454889445, −7.88211091381235878820764161946, −7.30647818477623968821930764601, −6.38077005394140132515397574814, −5.14835602141372492087227309525, −4.19380161604062251216377041374, −2.94604717979169455616141608452, −1.72499198700020913123458509048,
0.57860853304774827232541025519, 2.50449470584052816248329512979, 3.84648569751503651028688426898, 4.57826988552891443907818082189, 5.58522336273474374778132283569, 6.91868292996879587219329009569, 7.57025374724597293794274668235, 8.672872027134714002967234055949, 9.232585198370129513869736078720, 10.35634550438651451065639884482