| L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s + (2.73 + 1.57i)5-s + (−1.36 + 0.787i)7-s + 0.999i·8-s − 3.15·10-s + (−3.26 + 1.88i)11-s + (0.899 + 3.49i)13-s + (0.787 − 1.36i)14-s + (−0.5 − 0.866i)16-s − 7.06·17-s + 3.76i·19-s + (2.73 − 1.57i)20-s + (1.88 − 3.26i)22-s + (1.84 − 3.20i)23-s + ⋯ |
| L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.249 − 0.433i)4-s + (1.22 + 0.706i)5-s + (−0.515 + 0.297i)7-s + 0.353i·8-s − 0.998·10-s + (−0.983 + 0.567i)11-s + (0.249 + 0.968i)13-s + (0.210 − 0.364i)14-s + (−0.125 − 0.216i)16-s − 1.71·17-s + 0.864i·19-s + (0.611 − 0.353i)20-s + (0.401 − 0.695i)22-s + (0.385 − 0.667i)23-s + ⋯ |
Λ(s)=(=(702s/2ΓC(s)L(s)(−0.641−0.767i)Λ(2−s)
Λ(s)=(=(702s/2ΓC(s+1/2)L(s)(−0.641−0.767i)Λ(1−s)
| Degree: |
2 |
| Conductor: |
702
= 2⋅33⋅13
|
| Sign: |
−0.641−0.767i
|
| Analytic conductor: |
5.60549 |
| Root analytic conductor: |
2.36759 |
| Motivic weight: |
1 |
| Rational: |
no |
| Arithmetic: |
yes |
| Character: |
χ702(415,⋅)
|
| Primitive: |
yes
|
| Self-dual: |
no
|
| Analytic rank: |
0
|
| Selberg data: |
(2, 702, ( :1/2), −0.641−0.767i)
|
Particular Values
| L(1) |
≈ |
0.407112+0.871286i |
| L(21) |
≈ |
0.407112+0.871286i |
| L(23) |
|
not available |
| L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
|---|
| bad | 2 | 1+(0.866−0.5i)T |
| 3 | 1 |
| 13 | 1+(−0.899−3.49i)T |
| good | 5 | 1+(−2.73−1.57i)T+(2.5+4.33i)T2 |
| 7 | 1+(1.36−0.787i)T+(3.5−6.06i)T2 |
| 11 | 1+(3.26−1.88i)T+(5.5−9.52i)T2 |
| 17 | 1+7.06T+17T2 |
| 19 | 1−3.76iT−19T2 |
| 23 | 1+(−1.84+3.20i)T+(−11.5−19.9i)T2 |
| 29 | 1+(0.109+0.189i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−2.65−1.53i)T+(15.5+26.8i)T2 |
| 37 | 1−0.292iT−37T2 |
| 41 | 1+(−6.39−3.69i)T+(20.5+35.5i)T2 |
| 43 | 1+(3.05+5.29i)T+(−21.5+37.2i)T2 |
| 47 | 1+(6.17−3.56i)T+(23.5−40.7i)T2 |
| 53 | 1−14.4T+53T2 |
| 59 | 1+(9.04+5.22i)T+(29.5+51.0i)T2 |
| 61 | 1+(−3.00−5.19i)T+(−30.5+52.8i)T2 |
| 67 | 1+(6.33+3.65i)T+(33.5+58.0i)T2 |
| 71 | 1+0.772iT−71T2 |
| 73 | 1−13.5iT−73T2 |
| 79 | 1+(−6.34−10.9i)T+(−39.5+68.4i)T2 |
| 83 | 1+(−0.314+0.181i)T+(41.5−71.8i)T2 |
| 89 | 1−7.06iT−89T2 |
| 97 | 1+(0.535−0.309i)T+(48.5−84.0i)T2 |
| show more | |
| show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.52794915969822138417053616229, −9.832409976800655215704673972207, −9.175635848411388464977396838884, −8.289681127929790323054570037373, −7.00772390694493551994985162799, −6.49895219756482589786015067519, −5.70601431810311604343934040099, −4.49386642889560195143422629747, −2.70489697350972574092884683555, −1.94451026270754116115691841470,
0.57594786541199468360555219392, 2.13320593943312644301218589724, 3.14796133736459611025735572452, 4.71892050722427052240396350425, 5.68686553089576393525578201113, 6.57045572346122123847081573600, 7.69450803199012722426607267413, 8.736027005064463933233138385309, 9.214326476850437101505597483271, 10.16900123357602207237185726630