| L(s) = 1 | + (0.866 − 0.5i)2-s + (0.499 − 0.866i)4-s + (−2.73 − 1.57i)5-s + (1.36 − 0.787i)7-s − 0.999i·8-s − 3.15·10-s + (3.26 − 1.88i)11-s + (−3.47 + 0.966i)13-s + (0.787 − 1.36i)14-s + (−0.5 − 0.866i)16-s − 7.06·17-s − 3.76i·19-s + (−2.73 + 1.57i)20-s + (1.88 − 3.26i)22-s + (1.84 − 3.20i)23-s + ⋯ |
| L(s) = 1 | + (0.612 − 0.353i)2-s + (0.249 − 0.433i)4-s + (−1.22 − 0.706i)5-s + (0.515 − 0.297i)7-s − 0.353i·8-s − 0.998·10-s + (0.983 − 0.567i)11-s + (−0.963 + 0.268i)13-s + (0.210 − 0.364i)14-s + (−0.125 − 0.216i)16-s − 1.71·17-s − 0.864i·19-s + (−0.611 + 0.353i)20-s + (0.401 − 0.695i)22-s + (0.385 − 0.667i)23-s + ⋯ |
Λ(s)=(=(702s/2ΓC(s)L(s)(−0.754+0.656i)Λ(2−s)
Λ(s)=(=(702s/2ΓC(s+1/2)L(s)(−0.754+0.656i)Λ(1−s)
| Degree: |
2 |
| Conductor: |
702
= 2⋅33⋅13
|
| Sign: |
−0.754+0.656i
|
| Analytic conductor: |
5.60549 |
| Root analytic conductor: |
2.36759 |
| Motivic weight: |
1 |
| Rational: |
no |
| Arithmetic: |
yes |
| Character: |
χ702(415,⋅)
|
| Primitive: |
yes
|
| Self-dual: |
no
|
| Analytic rank: |
0
|
| Selberg data: |
(2, 702, ( :1/2), −0.754+0.656i)
|
Particular Values
| L(1) |
≈ |
0.490799−1.31202i |
| L(21) |
≈ |
0.490799−1.31202i |
| L(23) |
|
not available |
| L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
|---|
| bad | 2 | 1+(−0.866+0.5i)T |
| 3 | 1 |
| 13 | 1+(3.47−0.966i)T |
| good | 5 | 1+(2.73+1.57i)T+(2.5+4.33i)T2 |
| 7 | 1+(−1.36+0.787i)T+(3.5−6.06i)T2 |
| 11 | 1+(−3.26+1.88i)T+(5.5−9.52i)T2 |
| 17 | 1+7.06T+17T2 |
| 19 | 1+3.76iT−19T2 |
| 23 | 1+(−1.84+3.20i)T+(−11.5−19.9i)T2 |
| 29 | 1+(0.109+0.189i)T+(−14.5+25.1i)T2 |
| 31 | 1+(2.65+1.53i)T+(15.5+26.8i)T2 |
| 37 | 1+0.292iT−37T2 |
| 41 | 1+(6.39+3.69i)T+(20.5+35.5i)T2 |
| 43 | 1+(3.05+5.29i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−6.17+3.56i)T+(23.5−40.7i)T2 |
| 53 | 1−14.4T+53T2 |
| 59 | 1+(−9.04−5.22i)T+(29.5+51.0i)T2 |
| 61 | 1+(−3.00−5.19i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−6.33−3.65i)T+(33.5+58.0i)T2 |
| 71 | 1−0.772iT−71T2 |
| 73 | 1+13.5iT−73T2 |
| 79 | 1+(−6.34−10.9i)T+(−39.5+68.4i)T2 |
| 83 | 1+(0.314−0.181i)T+(41.5−71.8i)T2 |
| 89 | 1+7.06iT−89T2 |
| 97 | 1+(−0.535+0.309i)T+(48.5−84.0i)T2 |
| show more | |
| show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.37920863571558539722788072839, −8.972814549032754432878702266102, −8.639994698830473077778853955343, −7.31309250906743765592858519812, −6.70524298718805046591536548898, −5.21126618528690121408019827091, −4.40466053580730461748279097882, −3.84385269843302539214485608928, −2.28785130235375012927598741352, −0.59160368427326070866333136448,
2.15308087925642188568903913339, 3.49846457692906457827039923454, 4.30328210730137559322303065252, 5.20895727514860831828902970257, 6.60423965562610756971703944516, 7.13500838047298436365972733380, 7.970416556852161978893408401167, 8.841659882559981657169030489212, 9.991334451053739728917047695514, 11.15922694279929086543358276989