| L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s + (−2.40 − 1.38i)5-s + (0.759 − 0.438i)7-s + 0.999i·8-s + 2.77·10-s + (−1.92 + 1.11i)11-s + (−3.20 + 1.64i)13-s + (−0.438 + 0.759i)14-s + (−0.5 − 0.866i)16-s + 3.80·17-s + 2.22i·19-s + (−2.40 + 1.38i)20-s + (1.11 − 1.92i)22-s + (−0.259 + 0.449i)23-s + ⋯ |
| L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.249 − 0.433i)4-s + (−1.07 − 0.621i)5-s + (0.286 − 0.165i)7-s + 0.353i·8-s + 0.878·10-s + (−0.581 + 0.335i)11-s + (−0.889 + 0.456i)13-s + (−0.117 + 0.202i)14-s + (−0.125 − 0.216i)16-s + 0.923·17-s + 0.510i·19-s + (−0.537 + 0.310i)20-s + (0.237 − 0.411i)22-s + (−0.0541 + 0.0937i)23-s + ⋯ |
Λ(s)=(=(702s/2ΓC(s)L(s)(−0.246−0.969i)Λ(2−s)
Λ(s)=(=(702s/2ΓC(s+1/2)L(s)(−0.246−0.969i)Λ(1−s)
| Degree: |
2 |
| Conductor: |
702
= 2⋅33⋅13
|
| Sign: |
−0.246−0.969i
|
| Analytic conductor: |
5.60549 |
| Root analytic conductor: |
2.36759 |
| Motivic weight: |
1 |
| Rational: |
no |
| Arithmetic: |
yes |
| Character: |
χ702(415,⋅)
|
| Primitive: |
yes
|
| Self-dual: |
no
|
| Analytic rank: |
0
|
| Selberg data: |
(2, 702, ( :1/2), −0.246−0.969i)
|
Particular Values
| L(1) |
≈ |
0.344506+0.443130i |
| L(21) |
≈ |
0.344506+0.443130i |
| L(23) |
|
not available |
| L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
|---|
| bad | 2 | 1+(0.866−0.5i)T |
| 3 | 1 |
| 13 | 1+(3.20−1.64i)T |
| good | 5 | 1+(2.40+1.38i)T+(2.5+4.33i)T2 |
| 7 | 1+(−0.759+0.438i)T+(3.5−6.06i)T2 |
| 11 | 1+(1.92−1.11i)T+(5.5−9.52i)T2 |
| 17 | 1−3.80T+17T2 |
| 19 | 1−2.22iT−19T2 |
| 23 | 1+(0.259−0.449i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−3.81−6.60i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−4.97−2.87i)T+(15.5+26.8i)T2 |
| 37 | 1−11.3iT−37T2 |
| 41 | 1+(3.52+2.03i)T+(20.5+35.5i)T2 |
| 43 | 1+(−2.81−4.87i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−0.920+0.531i)T+(23.5−40.7i)T2 |
| 53 | 1+7.29T+53T2 |
| 59 | 1+(−3.52−2.03i)T+(29.5+51.0i)T2 |
| 61 | 1+(3.94+6.83i)T+(−30.5+52.8i)T2 |
| 67 | 1+(5.95+3.43i)T+(33.5+58.0i)T2 |
| 71 | 1−15.9iT−71T2 |
| 73 | 1−5.24iT−73T2 |
| 79 | 1+(7.09+12.2i)T+(−39.5+68.4i)T2 |
| 83 | 1+(0.641−0.370i)T+(41.5−71.8i)T2 |
| 89 | 1+9.89iT−89T2 |
| 97 | 1+(−13.6+7.86i)T+(48.5−84.0i)T2 |
| show more | |
| show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.45832519603459508032248340698, −9.865393428380420454701886532822, −8.777118382683837440290595110365, −8.002829608861665590162642504106, −7.52995231997384468801113556585, −6.50281958209861140228486161550, −5.11335073383316975370212114198, −4.51452383219060409025141756142, −3.05364822793952507297415027486, −1.31978288459664776512085422969,
0.38932738225904763676449231011, 2.43852987377106539910626599472, 3.33258360579458167637642866364, 4.50557207163373720736384429252, 5.74321276084682557086515964417, 7.04232692954228395086447599999, 7.78508601341078468584921223307, 8.237868092458195274280847947048, 9.449947435508166561552119077367, 10.30440647707921296409740460982