L(s) = 1 | + 2i·3-s + 49i·7-s + 239·9-s − 720·11-s − 572i·13-s + 1.25e3i·17-s + 94·19-s − 98·21-s − 96i·23-s + 964i·27-s + 4.37e3·29-s − 6.24e3·31-s − 1.44e3i·33-s − 1.07e4i·37-s + 1.14e3·39-s + ⋯ |
L(s) = 1 | + 0.128i·3-s + 0.377i·7-s + 0.983·9-s − 1.79·11-s − 0.938i·13-s + 1.05i·17-s + 0.0597·19-s − 0.0484·21-s − 0.0378i·23-s + 0.254i·27-s + 0.965·29-s − 1.16·31-s − 0.230i·33-s − 1.29i·37-s + 0.120·39-s + ⋯ |
Λ(s)=(=(700s/2ΓC(s)L(s)(0.894+0.447i)Λ(6−s)
Λ(s)=(=(700s/2ΓC(s+5/2)L(s)(0.894+0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
700
= 22⋅52⋅7
|
Sign: |
0.894+0.447i
|
Analytic conductor: |
112.268 |
Root analytic conductor: |
10.5956 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ700(449,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 700, ( :5/2), 0.894+0.447i)
|
Particular Values
L(3) |
≈ |
1.751906671 |
L(21) |
≈ |
1.751906671 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 7 | 1−49iT |
good | 3 | 1−2iT−243T2 |
| 11 | 1+720T+1.61e5T2 |
| 13 | 1+572iT−3.71e5T2 |
| 17 | 1−1.25e3iT−1.41e6T2 |
| 19 | 1−94T+2.47e6T2 |
| 23 | 1+96iT−6.43e6T2 |
| 29 | 1−4.37e3T+2.05e7T2 |
| 31 | 1+6.24e3T+2.86e7T2 |
| 37 | 1+1.07e4iT−6.93e7T2 |
| 41 | 1−1.20e4T+1.15e8T2 |
| 43 | 1−9.16e3iT−1.47e8T2 |
| 47 | 1+2.58e4iT−2.29e8T2 |
| 53 | 1+1.01e3iT−4.18e8T2 |
| 59 | 1+1.24e3T+7.14e8T2 |
| 61 | 1−7.59e3T+8.44e8T2 |
| 67 | 1−4.11e4iT−1.35e9T2 |
| 71 | 1+3.76e4T+1.80e9T2 |
| 73 | 1−1.34e4iT−2.07e9T2 |
| 79 | 1+6.24e3T+3.07e9T2 |
| 83 | 1−2.52e4iT−3.93e9T2 |
| 89 | 1−4.51e4T+5.58e9T2 |
| 97 | 1−1.07e5iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.832570293895776412158818852839, −8.649360719332333577174406183918, −7.88655519999573719184279539080, −7.16343352796214164402195215981, −5.85450451788696116084132978317, −5.21057904183596230082472839860, −4.11241372451629510421263495628, −2.95206904774621332742341164589, −1.92846793092497751727320626817, −0.49616688747952715104488793260,
0.75869988972999107093360258247, 2.02340381905979202935592871561, 3.08161184393776156385168972222, 4.42484505528440347936946747270, 5.05436040062549233605444697164, 6.30834623855936092748459620186, 7.32822126539191534170519903721, 7.73690482657648142927380389997, 8.958250196990659294690422451671, 9.848457870421664957455084023860