Properties

Label 2-700-1.1-c5-0-21
Degree $2$
Conductor $700$
Sign $-1$
Analytic cond. $112.268$
Root an. cond. $10.5956$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 28·3-s + 49·7-s + 541·9-s − 577·11-s + 974·13-s − 1.70e3·17-s − 878·19-s − 1.37e3·21-s − 1.29e3·23-s − 8.34e3·27-s + 109·29-s − 2.92e3·31-s + 1.61e4·33-s + 1.41e4·37-s − 2.72e4·39-s + 1.34e4·41-s + 1.22e4·43-s + 1.69e4·47-s + 2.40e3·49-s + 4.76e4·51-s − 2.45e4·53-s + 2.45e4·57-s − 2.45e4·59-s − 5.08e3·61-s + 2.65e4·63-s + 5.85e4·67-s + 3.63e4·69-s + ⋯
L(s)  = 1  − 1.79·3-s + 0.377·7-s + 2.22·9-s − 1.43·11-s + 1.59·13-s − 1.42·17-s − 0.557·19-s − 0.678·21-s − 0.511·23-s − 2.20·27-s + 0.0240·29-s − 0.546·31-s + 2.58·33-s + 1.70·37-s − 2.87·39-s + 1.25·41-s + 1.00·43-s + 1.12·47-s + 1/7·49-s + 2.56·51-s − 1.19·53-s + 1.00·57-s − 0.918·59-s − 0.174·61-s + 0.841·63-s + 1.59·67-s + 0.918·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(700\)    =    \(2^{2} \cdot 5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(112.268\)
Root analytic conductor: \(10.5956\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 700,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 - p^{2} T \)
good3 \( 1 + 28 T + p^{5} T^{2} \)
11 \( 1 + 577 T + p^{5} T^{2} \)
13 \( 1 - 974 T + p^{5} T^{2} \)
17 \( 1 + 100 p T + p^{5} T^{2} \)
19 \( 1 + 878 T + p^{5} T^{2} \)
23 \( 1 + 1297 T + p^{5} T^{2} \)
29 \( 1 - 109 T + p^{5} T^{2} \)
31 \( 1 + 2922 T + p^{5} T^{2} \)
37 \( 1 - 14175 T + p^{5} T^{2} \)
41 \( 1 - 13464 T + p^{5} T^{2} \)
43 \( 1 - 12229 T + p^{5} T^{2} \)
47 \( 1 - 16974 T + p^{5} T^{2} \)
53 \( 1 + 24506 T + p^{5} T^{2} \)
59 \( 1 + 24570 T + p^{5} T^{2} \)
61 \( 1 + 5080 T + p^{5} T^{2} \)
67 \( 1 - 58575 T + p^{5} T^{2} \)
71 \( 1 + 20705 T + p^{5} T^{2} \)
73 \( 1 - 53540 T + p^{5} T^{2} \)
79 \( 1 + 101027 T + p^{5} T^{2} \)
83 \( 1 - 61638 T + p^{5} T^{2} \)
89 \( 1 - 47038 T + p^{5} T^{2} \)
97 \( 1 - 82 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.417547674239387726381737052432, −8.267090575214793157362771077183, −7.35786886290842914878624764325, −6.21285464308969869561597374205, −5.85826048058448876999644352255, −4.78566748007337376065461855286, −4.07920366453675505463295407310, −2.26766649707545221115016410084, −0.973485783525953530611383237650, 0, 0.973485783525953530611383237650, 2.26766649707545221115016410084, 4.07920366453675505463295407310, 4.78566748007337376065461855286, 5.85826048058448876999644352255, 6.21285464308969869561597374205, 7.35786886290842914878624764325, 8.267090575214793157362771077183, 9.417547674239387726381737052432

Graph of the $Z$-function along the critical line