| L(s)  = 1  |     − 28·3-s         + 49·7-s     + 541·9-s     − 577·11-s     + 974·13-s         − 1.70e3·17-s     − 878·19-s     − 1.37e3·21-s     − 1.29e3·23-s         − 8.34e3·27-s     + 109·29-s     − 2.92e3·31-s     + 1.61e4·33-s         + 1.41e4·37-s     − 2.72e4·39-s     + 1.34e4·41-s     + 1.22e4·43-s         + 1.69e4·47-s     + 2.40e3·49-s     + 4.76e4·51-s     − 2.45e4·53-s         + 2.45e4·57-s     − 2.45e4·59-s     − 5.08e3·61-s     + 2.65e4·63-s         + 5.85e4·67-s     + 3.63e4·69-s  + ⋯ | 
 
| L(s)  = 1  |     − 1.79·3-s         + 0.377·7-s     + 2.22·9-s     − 1.43·11-s     + 1.59·13-s         − 1.42·17-s     − 0.557·19-s     − 0.678·21-s     − 0.511·23-s         − 2.20·27-s     + 0.0240·29-s     − 0.546·31-s     + 2.58·33-s         + 1.70·37-s     − 2.87·39-s     + 1.25·41-s     + 1.00·43-s         + 1.12·47-s     + 1/7·49-s     + 2.56·51-s     − 1.19·53-s         + 1.00·57-s     − 0.918·59-s     − 0.174·61-s     + 0.841·63-s         + 1.59·67-s     + 0.918·69-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(3)\)  | 
            \(=\) | 
             \(0\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(=\) | 
      
       \(0\)  | 
    
    
        
      |  \(L(\frac{7}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | 
|---|
| bad | 2 |  \( 1 \)  | 
 | 5 |  \( 1 \)  | 
 | 7 |  \( 1 - p^{2} T \)  | 
| good | 3 |  \( 1 + 28 T + p^{5} T^{2} \)  | 
 | 11 |  \( 1 + 577 T + p^{5} T^{2} \)  | 
 | 13 |  \( 1 - 974 T + p^{5} T^{2} \)  | 
 | 17 |  \( 1 + 100 p T + p^{5} T^{2} \)  | 
 | 19 |  \( 1 + 878 T + p^{5} T^{2} \)  | 
 | 23 |  \( 1 + 1297 T + p^{5} T^{2} \)  | 
 | 29 |  \( 1 - 109 T + p^{5} T^{2} \)  | 
 | 31 |  \( 1 + 2922 T + p^{5} T^{2} \)  | 
 | 37 |  \( 1 - 14175 T + p^{5} T^{2} \)  | 
 | 41 |  \( 1 - 13464 T + p^{5} T^{2} \)  | 
 | 43 |  \( 1 - 12229 T + p^{5} T^{2} \)  | 
 | 47 |  \( 1 - 16974 T + p^{5} T^{2} \)  | 
 | 53 |  \( 1 + 24506 T + p^{5} T^{2} \)  | 
 | 59 |  \( 1 + 24570 T + p^{5} T^{2} \)  | 
 | 61 |  \( 1 + 5080 T + p^{5} T^{2} \)  | 
 | 67 |  \( 1 - 58575 T + p^{5} T^{2} \)  | 
 | 71 |  \( 1 + 20705 T + p^{5} T^{2} \)  | 
 | 73 |  \( 1 - 53540 T + p^{5} T^{2} \)  | 
 | 79 |  \( 1 + 101027 T + p^{5} T^{2} \)  | 
 | 83 |  \( 1 - 61638 T + p^{5} T^{2} \)  | 
 | 89 |  \( 1 - 47038 T + p^{5} T^{2} \)  | 
 | 97 |  \( 1 - 82 T + p^{5} T^{2} \)  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−9.417547674239387726381737052432, −8.267090575214793157362771077183, −7.35786886290842914878624764325, −6.21285464308969869561597374205, −5.85826048058448876999644352255, −4.78566748007337376065461855286, −4.07920366453675505463295407310, −2.26766649707545221115016410084, −0.973485783525953530611383237650, 0, 
0.973485783525953530611383237650, 2.26766649707545221115016410084, 4.07920366453675505463295407310, 4.78566748007337376065461855286, 5.85826048058448876999644352255, 6.21285464308969869561597374205, 7.35786886290842914878624764325, 8.267090575214793157362771077183, 9.417547674239387726381737052432